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Abstract

Background: Depression is one of the most common mental disorders that affects >300 million people worldwide. There is a
shortage of providers trained in the provision of mental health care, and the nursing workforce is essential in filling this gap. The
diagnosis of depression relies heavily on self-reported symptoms and clinical interviews, which are subject to implicit biases.
The omics methods, including genomics, transcriptomics, epigenomics, and microbiomics, are novel methods for identifying the
biological underpinnings of depression. Machine learning is used to analyze genomic data that includes large, heterogeneous,
and multidimensional data sets.

Objective: This scoping review aims to review the existing literature on machine learning methods for omics data analysis to
identify individuals with depression, with the goal of providing insight into alternative objective and driven insights into the
diagnostic process for depression.

Methods: This scoping review was reported following the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses Extension for Scoping Reviews) guidelines. Searches were conducted in 3 databases to identify relevant
publications. A total of 3 independent researchers performed screening, and discrepancies were resolved by consensus. Critical
appraisal was performed using the Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross-Sectional Studies.

Results: The screening process identified 15 relevant papers. The omics methods included genomics, transcriptomics, epigenomics,
multiomics, and microbiomics, and machine learning methods included random forest, support vector machine, k-nearest neighbor,
and artificial neural network.

Conclusions: The findings of this scoping review indicate that the omics methods had similar performance in identifying omics
variants associated with depression. All machine learning methods performed well based on their performance metrics. When
variants in omics data are associated with an increased risk of depression, the important next step is for clinicians, especially
nurses, to assess individuals for symptoms of depression and provide a diagnosis and any necessary treatment.

(JMIR Nursing 2024;7:e54810) doi: 10.2196/54810
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Introduction

Significance of Depression
Depression is one of the most common mood disorders, with a
prevalence of approximately 20% in adults in the United States
[1,2]. Among people with diagnosed depression, nearly half
experience severe depression, and 40% experience moderate
depression [1]. Between 2010 and 2018, the number of adults
in the United States diagnosed with depression increased by
13%, and the associated health care costs also increased,
including medical and pharmaceutical costs, workplace
absenteeism, and suicide-related costs [3]. Despite a greater
investment in mental health, approximately half of the people
experiencing depression have been diagnosed and treated [4].
There have been limited improvements in the mental health
care of depression during the past decade, primarily owing to
the challenges in accurately diagnosing this complex illness [5].
Consequently, there is an urgent imperative to explore and
establish more objective diagnostic approaches that can better
identify individuals with depression and pave the way for more
effective interventions and personalized treatment strategies.

Diagnostic Methods for Depression
The gold standard for depression diagnosis involves a structured
psychiatric interview [2] that includes validated depression
scales such as the Center for Epidemiologic Studies–Depression
Scale, Hamilton Rating Scale for Depression-17,
Montgomery-Asberg Depression Rating Scale, and the Beck
Depression Inventory [6]. While these validated scales can be
administered by a trained interviewer, a licensed mental health
provider is required to make a formal diagnosis [2]. This
method, while routinely used, is subjective to the clinician
conducting the interview, leading to potential variations in
diagnosis.

There are several other barriers to the diagnosis of depression,
which include limited access to health care services and societal
stigma toward mental health diagnoses. The Diagnostic and
Statistical Manual of Mental Disorders defines depression as
a heterogenous disorder that is diagnosed based on the core
symptoms of depressed mood or anhedonia and at least 4 of the
9 other symptoms, including appetite changes, sleep changes,
fatigue, difficulty in concentrating, feeling worthless, and
suicidal ideation; depression is present if these symptoms last
for at least 2 weeks [5]. Furthermore, the heterogeneity of
symptoms in depression makes diagnosis difficult [7], and it is
described differently across cultures [8]. In addition, there is
social stigma and perceived conflict with normative social roles
that prevent many patients from being honest about their
thoughts and feelings [6].

Nursing Care for Depression
Second to social work, nursing is the largest profession in the
mental health workforce [9]. In 2013, it was estimated that 4%
of the total registered nursing workforce provided mental health
care, and in 2015, the number was estimated by the National
Nursing Workforce Survey to be 134,000 registered nurses [9].
Advanced practice registered nurses are a vital part of the mental
health workforce, especially in rural areas where there are few

licensed mental health professionals with prescribing capabilities
[9].

Genomics of Depression
Owing to multilevel biases around diagnoses of depression,
including implicit bias of providers, social desirability bias of
patients, and bias introduced by data processing, alternative
methods for an objective biologically informed diagnosis are
being explored [10,11]. Currently, biomarkers, such as single
nucleotide polymorphisms (SNPs), messenger RNA (mRNA),
microRNA, proteins, and methylated DNA, are being sequenced
and combined with scores on standardized depression
instruments to evaluate whether they can improve the sensitivity
and specificity of a depression diagnosis. Ideally, biomarker
profiling would be performed on brain tissue, as it offers
valuable insights into the underlying neurobiological
mechanisms [6]. However, brain biopsies are dangerously
invasive, so peripheral blood or saliva is often used as an
alternative sample type [6]. Importantly, recent studies have
shown a high correlation in gene expression and methylation
patterns between blood and saliva samples and brain tissue,
supporting the utility of peripheral samples as valuable
surrogates for understanding the molecular mechanisms
underlying depression [12-14]. Therefore, this study focuses
on studies that use blood or saliva sample types for the diagnosis
of depression.

The heritability of depression is estimated to be 40%, and many
studies have been performed to identify genetic variants or SNPs
that are associated with depression [15,16]. Genomic analysis
can be performed through genome-wide association studies
(GWASs). The 2 types of GWAS are classical and functional.
Classical GWAS identifies SNPs that are associated with
specific traits or diseases [15]. Functional GWAS determines
how SNPs overlap with regulatory elements such as enhancers
and promotors and predicts how these SNPs function [15]. A
GWAS of samples in the Taiwan Biobank identified SNPs in
17 different genes that were significantly associated with
depression [16]. Results from GWAS analyses suggest that
depression is a polygenic disorder, meaning many SNPs can
affect the hereditary influence [4]. SNPs identified through
GWASs can be used to compute polygenic risk scores [4].
Polygenic risk scores combine the effects of genetic variants
into an overall score that reflects an individual’s propensity for
a disease [17].

Transcriptomics of Depression
The transcriptome is all of the body’s mRNA and contains
coding instructions for protein synthesis [18,19]. Transcriptome
analysis is useful for measuring gene expression. Recently
developed sequencing techniques allow the expression levels
of thousands of transcripts to be measured simultaneously [19].
Differentially expressed genes (DEGs) in patients with
depression and healthy controls have been identified in both
peripheral blood samples and brain tissues [18].

Epigenomics of Depression
Epigenetics leads to heritable changes in gene expression
without affecting the underlying genetic sequences [20]. Studies
have shown that epigenetics may be as influential as genetic
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variants in the development of depression [21]. Two types of
epigenetic modifiers are DNA methylation (DNAm) and
microRNA. DNAm occurs at sites in the genetic sequence where
the nucleotides cytosine and guanine are bound together in
clusters known as cytosine-phosphodiester bond-guanine (CpG)
islands [21]. DNAm is responsive to environmental stimuli and
can affect gene expression by inhibiting the transcription of
affected genes [21]. MicroRNAs are small, noncoding RNAs
up to 25 nucleotides in length [20]. Unlike mRNA, they are not
translated into protein. Instead, they bind to mRNA to suppress
protein translation, leading to decreased gene expression [20].
The effects of several microRNAs have been found to be
upregulated or downregulated in individuals with depression
[1].

In some studies, >1 sequencing method is used on the samples
to produce different types of omics data. In the multiomics study
by Bhak et al [6], blood samples were sequenced using
Methyl-Seq to produce epigenomic data and RNA-Seq to
produce transcriptomic data. Using these data, the authors were
able to distinguish between people with depression who have
attempted suicide, people with depression who have not
attempted suicide, and healthy controls [6]. Combining >1 omics
data type can improve prediction accuracy [6].

Microbiomics of Depression
The diversity of microbiota in the gut is influenced by genetics,
development, and environment [22]. In the gut microbiome, the
gut microbiota transmit signals to the brain through pathways
associated with neural transmission and control of behaviors
[22]. Depression has been associated with gut dysbiosis, an
imbalance of the gut microbiota that is associated with adverse
health outcomes [23,24]. Some strains of bacteria have been
associated with depression in multiple studies, including
Eggerthella, Subdoligranulum, Coprococcus, and
Ruminococcaceae [25]. Furthermore, studies have found
differences in metabolic pathways between individuals with
depression and healthy controls [24].

Machine Learning Methods to Identify Individuals
With Depression From Omics Data
Omics data are inherently complex and often too large for
manual evaluation [26]. Machine learning, a form of artificial
intelligence, is useful for detecting subtle patterns in large data
sets, allowing it to predict multifactorial diseases [11,27]. By
training algorithms on data, machine learning models identify
patterns and make predictions that may be beyond human
capabilities [28]. Machine learning algorithms can be supervised,
where the algorithm learns from labeled training data to make
predictions in unlabeled testing data, or unsupervised, where
there is no labeling, and the algorithm categorizes the data into
groups or finds complex patterns [29].

Machine learning models are being investigated to aid in the
development of predictive algorithms to help understand how
genetic variation can affect disease status [16]. A key aspect of
machine learning is feature selection, which helps determine
the importance of each feature and its contribution to the
model’s performance during training; in omics data, features
can encompass various entities, such as SNPs, DEGs, or DNAm

sites [6]. Machine learning can be useful for analyzing
transcriptomic data because traditional statistical methods may
not fully capture molecular interactions between genes [30].

Through machine learning, researchers can not only identify
genes associated with a specific disease but also explore linear
and nonlinear gene interactions [30]. While there is great
potential in using machine learning to advance omics knowledge
on depression, no prior studies have summarized the machine
learning methods used to analyze omics data for depression.
Therefore, this scoping review aims to provide an overview of
the existing literature on using machine learning methods to
analyze omics data to identify individuals with depression.

Methods

This scoping review was reported following the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses Extension for Scoping Reviews) guidelines [31].

Search Strategies
Searches were conducted in 3 databases between November
and December 2022: PubMed, CINAHL, and Scopus. The
search strategy used terms representing machine learning;
depression; and different types of omics, including genomics,
transcriptomics, and epigenomics (Multimedia Appendix 1).
Keywords were combined using Boolean operators.

Selection Criteria
After deduplication, 3 independent reviewers (BT, MH, and
SN) conducted pairwise screening of titles and abstracts with
specific inclusion and exclusion criteria using Covidence
(Veritas Health Innovation) systematic review web software.
This resulted in a set of papers for full-text review that were
also reviewed pairwise, with disagreements resolved by
consensus. Specific inclusion criteria consisted of studies
published in peer-reviewed journals, English, and the past 5
years (ie, between January 1, 2017, and December 31, 2022).
Publication dates were limited to the past 5 years because
genetic sequencing is constantly evolving, and older studies
may have used outdated methods [32]. Furthermore, all studies
had to include (1) an omics method involving the sequencing
of genetic material to identify depression and (2) an approach
that used machine learning or deep learning to analyze the omics
data. Papers were excluded if they focused on omics methods
that did not involve sequencing of genetic material, such as
metabolomics and lipidomics. In addition, review papers; deep
learning studies of medical images; and studies focusing on
other disorders, such as bipolar disorder, anxiety disorder,
posttraumatic stress disorder, and schizophrenia, were excluded.

Any disagreements between screeners were discussed and
resolved through consensus. After the initial screening, full texts
of the remaining papers were reviewed. Reference lists were
also screened to identify any additional papers meeting the
inclusion criteria. Covidence software was used throughout the
screening process. Data charting was completed for the eligible
studies using Word (Microsoft Corp).
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Data Extraction
Items extracted included author, year, study design, and sample
size. Data extracted included the omics type, machine learning
method, sample type, and depression screening instrument used.
Charted data were synthesized by grouping studies according
to their omics method (eg, genomics and transcriptomics).

Critical appraisal was performed using the Joanna Briggs
Institute Critical Appraisal Checklist for Analytical
Cross-Sectional Studies [33]. This checklist was chosen because
the genomic data in the studies included in this review were
analyzed at a single point in time [34]. The checklist appraises
inclusion criteria, measurement of exposure and outcomes,
confounding, and statistical analysis. Questions are answered
as yes, no, unclear, or not applicable [33].

Results

Search Summary
The initial database search yielded 964 papers; 266 (27.6%)
papers were removed as duplicates. Of the 964 papers, the titles
and abstracts of 698 (72.4%) papers were screened for eligibility.
A priori exclusion criteria were applied throughout the title and
abstract screening of the 698 papers, and 668 (95.7%) papers
were excluded. Of the 698 papers, 30 (4.3%) met the criteria
for full-text review and were assessed for eligibility, of which
15 (50%) were included in this scoping review. This screening
process is visualized in a PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) flow diagram
(Figure 1).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram.

Summary of Study Characteristics
The included studies were published between 2017 and 2022.
The studies were conducted in 8 countries: Germany (1/15, 7%),
South Korea (1/15, 7%), Australia (1/15, 7%), China (1/15,
7%), Taiwan (1/15, 7%), Canada (2/15, 13%), United States
(6/15, 40%), Japan (1/15, 7%), and India (1/15, 7%). All the

studies were cross-sectional design studies. The studies
addressed genomics (5/15, 33%), transcriptomics (5/15, 33%),
epigenomics (3/15, 20%), multiomics (1/15, 7%), and
microbiomics (1/15, 7%). Machine learning methods included
random forest, support vector machine, k-nearest neighbor,
artificial neural network, and deep learning. Study characteristics
are further described in Table 1.
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Table 1. Study characteristics.

Screening instrumentDepression
diagnosis

Age rangeSample size, nCountryType of omics and study

Genomics

ScreeningNot given922 (463 cases and
459 controls)

United StatesArabnejad et al [35],
2018

• Composite International Diagnostic
Interview–Short Form

• Structured Clinical Interview for

DSM-IVa

• Patient Health Questionnaire-9

Not givenNot given3514 (1476 cases and
2038 controls)

GermanyArloth et al [15], 2020 • Not given

PsychiatristMean 51.2 (SD
10.4) years

9828 (2457 cases and
7371 controls)

TaiwanLin et al [16], 2021 • Patient Health Questionnaire

Not givenNot given100 (66 cases and 34
controls)

United StatesSekaran and Sudha [26],
2019

• Not given

Not givenMean 60 (SD
11) years

6733 (185 cases and
6548 controls)

JapanTakahashi et al [36],
2020

• Center for Epidemiological Studies–De-
pression Scale

Transcriptomics

Screening70 to 90 years521 (27 cases and 494
controls)

AustraliaCiobanu et al [30], 2020 • Geriatric Depression Scale
• Patient Health Questionnaire
• Neuropsychiatric Inventory

PsychiatristNot given157 (78 cases and 79
controls)

United StatesLe et al [37], 2020 • Montgomery-Asberg Depression Rat-
ing Scale

ScreeningNot given915 (463 cases and
452 controls)

United StatesParvandeh et al [38],
2020

• Composite International Diagnostic
Interview–Short Form

• Structured Clinical Interview for
DSM-IV

• Patient Health Questionnaire-9

Not given>18 years2295 (1765 cases and
530 controls)

CanadaQi et al [18], 2021 • Not given

Not givenNot given59 (30 cases and 29
controls)

IndiaVerma and Shakya [19],
2022

• Not given

Epigenomics

Psychiatrist18 to 65 years391 (291 cases and
100 controls)

ChinaFan et al [27], 2021 • Hamilton Rating Scale for Depression-
17

ScreeningNot given267 (54 cases and 213
controls)

United StatesPayne et al [39], 2020 • Edinburgh Postnatal Depression Scale

PsychiatristNot given168 (140 cases and 28
controls)

CanadaQi et al [1], 2020 • Montgomery-Asberg Depression Rat-
ing Scale

Microbiomics

PsychiatristNot given40 (20 cases and 20
controls)

United StatesStevens et al [24], 2021 • None

Multiomics

Psychiatrist19 to 46 years182 (95 cases and 87
controls)

South KoreaBhak et al [6], 2019 • Hamilton Rating Scale for Depression-
17

aDSM-IV: Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition).

Genomics
One study combined classical and functional GWASs and
annotated SNPs based on their regulatory potential and

combination with a functional unit (FU) [15]. This method is
called a multivariate FU-wide association study (DeepWAS)
[15]. A DeepWAS can identify SNPs associated with a disease
(dSNPs) [15]. A DeepWAS successfully identified 61 dSNPs
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in 237 FUs that were associated with depression; 60 (25.3%)
of these dSNPs were significant (Table 2) [15]. To validate
these results, the dSNPs were compared to SNPs identified by
other GWASs [15]. A total of 4 dSNPs overlapped with a large
GWAS by the UK Biobank: the LARP6-LRRC49 gene, 2
intergenic regions near the WNT2 and ASZ1 genes, the ATG9B
and ABCB8 genes on chromosome 7, and a site near the
C1orf220 and MIR4424 genes on chromosome 1 [15]. In
addition, the DeepWAS identified an SNP on the transcription
factor binding site of MEF2C on chromosome 8 as a regulator
for depression [15]. The GWAS using data collected from 2
prefectures in Japan included 102 SNPs in the model with the
highest prediction accuracy [36]. However, none of these

variants were significant at the 5.0×10–8 level, and the top 11
variants only explained 0.0036% of the variance in the validation
data set, which is a very small effect size [36].

Using data from the Taiwan Biobank, a novel SNP,
rs192922209, located in the intron region of the FBN1 gene on
chromosome 15, was associated with depression [16]. In
addition, a novel SNP was associated with depression in female

individuals: rs114542799 in the intron region of the ALDH1L1
gene on chromosome 3 [16]. Furthermore, this study identified
17 SNPs with potential roles as expression quantitative trait loci
[16]. Arabnejad et al [35] used GWAS data to identify
significant SNPs and their associated genes to test for pathways
that overlap with depression. They identified the top 500 SNPs
using different feature selection methods and compared the
number of genes detected to the biological pathways [35].
Pathways that previous studies have associated with depression
were reported: axon guidance pathway, neuronal system
pathway, and pathways related to G protein–coupled receptors,
which affect neurotransmitter signaling [35].

Sekaran and Sudha [26] aimed to identify genetic variants
related to depression by using DNA microarrays. Sample
participants were classified into 3 categories: patients with
depression with lipopolysaccharide treatment, patients with
depression without lipopolysaccharide treatment, and healthy
controls [26]. A total of 27 genetic biomarkers associated with
depression were identified; the biomarker A_23_P109436, was
able to classify the data with the highest precision [26].
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Table 2. Study findings.

Key findingsSample typeType of omics and study

Genomics

BloodArabnejad et al [35],
2018

• Detected pathways associated with depression, including axon guidance, neuronal system, and G
protein–coupled receptor signaling

Not givenArloth et al [15], 2020 • Identified 61 dSNPsa in 237 FUsb; 60 of the dSNPs were significant
• A total of 4 dSNPs were also found in a GWASc by the UK Biobank
• A SNPd on the MEF2C gene was identified as a regulator for depression

BloodLin et al [16], 2021 • This study identified a novel SNP on the FBN1 gene associated with depression
• A novel SNP on the ALDH1L1 was associated with depression in female individuals
• A total of 17 SNPs with potential roles as expression quantitative trait loci were pinpointed

Not givenSekaran and Sudha [26],
2019

• Identified 27 genetic biomarkers associated with depression
• A biomarker, A_23_P109436, classified the data with the highest precision

BloodTakahashi et al [36],
2020

• The model with the highest prediction accuracy included 102 SNPs
• None of these SNPs were significant at the 5.0×10–8 level

Transcriptomics

BloodCiobanu et al [30], 2020 • Downregulation of the transferrin receptor gene is associated with depression

BloodLe et al [37], 2020 • Identified 23 depression gene modules

BloodParvandeh et al [38],
2020

• The best performing model had a significant overlap of 959 genes with the initial 7616 genes
(P<.001)

Brain and
blood

Qi et al [18], 2021 • Analysis of brain mRNAe revealed 62 DEGsf used to distinguish cases from controls
• Analysis of blood mRNA found 1376 DEGs

BloodVerma and Shakya [19],
2022

• A total of 624 transcripts correlated with the classification of patients with depression who died
by suicide, those who did not die by suicide, and healthy controls

Epigenomics

BloodFan et al [27], 2021 • Identified 9 differentially methylated sites on the tryptophan hydroxylase-2 gene

BloodPayne et al [39], 2020 • Found that DNAmg in the first trimester could accurately predict depression in the third trimester
• Third-trimester DNAm predicted postpartum depression

BloodQi et al [1], 2020 • A total of 4 microRNAs differed significantly, but these differences were not significant

Microbiomics

StoolStevens et al [24], 2021 • Found decreased amounts of Faecalibacterium, Ruminococcus, Lachnospiraceae, and Bacterioides
species in the microbiomes of the individuals in the group with depressive symptoms

Multiomics

BloodBhak et al [6], 2019 • Identified 48 DEGs and 810 differentially methylated sites that significantly correlated with de-
pression scores

adSNPs: single nucleotide polymorphisms associated with a disease.
bFU: functional unit.
cGWAS: genome-wide association study.
dSNP: single nucleotide polymorphism.
emRNA: messenger RNA.
fDEG: differentially expressed gene.
gDNAm: DNA methylation.
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Transcriptomics
Ciobanu et al [30] used transcriptomic data to identify a link
between depression and the transferrin receptor gene on
chromosome 3. When downregulated, this gene is associated
with recurrent depression [30]. In the study by Verma and
Shakya [19], differential gene expression was examined between
patients with depression who died by suicide, those who did
not die by suicide, and healthy controls. A total of 624
transcripts were found to be biologically and functionally related
to classifying the 3 categories [19]. Most of these transcripts
were associated with neurotransmitter receptors, postsynaptic
signal transmission, synaptic depression, gamma-aminobutyric
acid receptor activation, and glutamatergic synapse [19].

Using RNA sequence data, Parvandeh et al [38] aimed to
classify patients with depression and healthy controls. They
analyzed 7616 genes that are known to be associated with
depression based on prior studies; these genes were compared
to a repository of genes associated with mental disorders from
the DisGeNET platform [38]. The best performing model had
an overlap of 959 genes with the initial 7616 genes and P<.001,
indicating significant overlap [38]. Using brain mRNA to
discriminate between cases and controls, the best performing
model identified 62 DEGs [18]. These genes were associated
with upregulation of metalloaminopeptidase activity,
downregulation of oxidoreductase activity, and upregulation of
aminopeptidase activity [18]. Furthermore, this study used blood
mRNA to identify 1376 DEGs associated with depression [18].
RNA-Seq Rdata was used to identify depression gene modules
(DGMs), genes that are interconnected and coexpressed, and
predict a clinical diagnosis of depression [37]. A total of 23
DGMs were identified; DGM-5 was most predictive of
depression diagnosis and was significantly associated with
depression severity [37].

Epigenomics
In the epigenetic study of postpartum depression by Payne et
al [39], the authors used DNAm biomarker profiles on the
TTC9B and HP1BP3 genes to predict antenatal and postpartum
depression [39]. A total of 4 separate cohorts were included in
this study, and blood samples were drawn during different
trimesters of pregnancy [39]. They found that DNAm
biomarkers from samples collected during the first trimester
could accurately predict depression in the third trimester [39].
In addition, biomarker profiles in third-trimester samples
predicted depression in the postpartum period [39].

The DNAm study by Fan et al [27] focused on methylation of
the tryptophan hydroxylase-2 gene, which functions in the
production of serotonin. They identified 9 CpG sites on the
tryptophan hydroxylase-2 gene that differ significantly between
patients with depression and healthy controls [27]. In the
microRNA study by Qi et al [1], 4 microRNAs were found to
differ significantly between patients with depression and healthy

controls. However, none of these microRNAs remained
significant after Bonferroni correction [1].

Microbiomics
One study used genomic variants in the microbiome to
distinguish between individuals with depression and healthy
controls [24]. After examining exact amplicon sequence variants,
biological sequences that have been inferred through shotgun
sequencing, the authors found decreased abundances of
Faecalibacterium, Ruminococcus, Lachnospiraceae, and
Bacterioides species in the microbiomes of the individuals in
the depression group compared to those in the healthy group
[24]. Furthermore, they found that pathways involved in the
degradation of the neurotransmitter gamma-aminobutyric acid
and the fatty acid butyrate were more prominent in individuals
with depression [24].

Multiomics
The multiomics study using blood transcriptome and methylome
data identified DEGs and differentially methylated sites (DMSs)
in individuals with depression and controls [6]. This study
included 3 cohorts: 56 individuals with depression who
attempted suicide, 39 individuals with depression who did not
attempt suicide, and 87 healthy controls [6]. A total of 80 DMSs
were identified between individuals with depression who did
not attempt suicide, and 95 DMSs and 7 DEGs were identified
between individuals with depression who attempted suicide and
controls [6]. Between individuals with depression who did and
did not attempt suicide, 69 DMSs were found [6]. In addition,
48 DEGs and 810 DMSs were significantly correlated with
scores on the Hamilton Rating Scale for Depression-17 [6]. A
functional enrichment test was conducted to investigate
pathways associated with the model input features. A difference
in enrichment was detected between depressed individuals who
did not attempt suicide “and controls in the Hippo signaling
pathway, which includes the Protein Kinase C gene on
chromosome 2 and the Frizzled Class Receptor 7 gene on
chromosome 1 [6]. In addition, protocadherin genes were
enriched in depressed individuals who attempted suicide
compared to controls [6].

Supervised Machine Learning
In an epigenomic study, linear discriminant analysis and support
vector machine were used to predict depression in the first,
second, or third trimester of pregnancy [39]. Linear discriminant
analysis predicted depression in the third trimester with an
accuracy >70% and an area under the curve (AUC) of 0.72
(Table 3); similarly, support vector machine predictions for the
same trimester had an accuracy of 72% and AUC of 0.83 [39].
Support vector machine also successfully identified women
with depression in the postpartum period with an AUC of 0.78;
an AUC >0.5 indicates the model has some level of
discriminatory ability and can adequately distinguish between
cases and controls better than random chance [39].

JMIR Nursing 2024 | vol. 7 | e54810 | p. 8https://nursing.jmir.org/2024/1/e54810
(page number not for citation purposes)

Taylor et alJMIR NURSING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. Machine learning methods and performance metrics.

SpecificitySensitivityAccuracyAUCaType of omics, study, and machine learning method

Genomics

Arabnejad et al [35], 2018b

————cReliefF

————Random forest

————Lasso regression

Arloth et al [15], 2020

———0.59-0.66DeepWASd or DeepSEAe

Lin et al [16], 2021

0.760.76—0.82Random forest

0.760.76—0.76Support vector machine

0.760.76—0.76Decision tree

0.760.76—0.82Logistic ridge regression

0.760.76—0.82LogitBoost

Sekaran and Sudha [26], 2019

——0.96f—Bayesian network

——0.73—Support vector machine

——0.91—Random forest

——0.72—Neural network

——0.70—Linear discriminant analysis

Takahashi et al [36], 2020g

————Smooth-threshold multivariate genetic prediction

————Genomics best linear unbiased prediction

————Summary data–based best linear unbiased prediction

————Bayes regression

————Ridge regression

Transcriptomics

Ciobanu et al [30], 2020

0.660.630.63—Fuzzy forest

Le et al [37], 2020

——0.48-0.65—Tree-based pipeline optimization tool

——0.49-0.59—Extreme gradient boost

Parvandeh et al [38], 2020

——0.59—Consensus nested cross-validation

——0.56—Nested cross-validation

——0.58—Private evaporative cooling

——0.51—General Elastic net

Qi et al [18], 2021

——0.67-0.850.55-0.72Extreme gradient boost

———0.62-0.91Logistic regression

Verma and Shakya [19], 2022

——0.39-0.61—Random forest
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SpecificitySensitivityAccuracyAUCaType of omics, study, and machine learning method

——0.28-0.61—K-nearest neighbor

Epigenomics

Fan et al [27], 2021

0.81-0.920.65-0.740.69-0.780.79-0.91Random forest

0.49-0.880.41-0.830.50-0.850.57-0.86Support vector machine

0.49-0.950.78-0.980.75-0.970.78-0.99Neural network

Payne et al [39], 2020

———0.77-0.84Support vector machine

———0.72Linear discriminant analysis

Qi et al [1], 2020

———0.49-0.97Clustering

Microbiomics

Stevens et al [24], 2021

———0.66-0.90Random forest

Multiomics

Bhak et al [6], 2019

0.85-10.59-0.980.87-0.93—Random forest

aAUC: area under the curve.
bMachine learning methods were evaluated based on the number of genes found in pathways implicated in mood disorders.
cNot reported.
dDeepWAS: multivariate functional unit–wide association study.
eDeepSEA: deep learning-based sequence analyzer.
fItalics represent the best performing models.
gThe only performance metrics given were partial correlation coefficients.

The GWAS of the Taiwan Biobank used 5 machine learning
algorithms to build creative models incorporating SNPs and
demographic information: logistic ridge regression, support
vector machine, decision tree, LogitBoost, and random forest
[16]. Logistic ridge regression and LogitBoost had the best
performance with an AUC >0.82 and sensitivity and specificity
>0.76 [16]. In the GWAS study by Takahashi et al [36], the
authors aimed to decrease overfitting by decreasing the number
of null variants included in the model. They compared the
performance of 6 different models: smooth-threshold
multivariate genetic prediction, polygenic risk scores, genomic
best linear unbiased prediction, summary data–based best linear
unbiased prediction, a Bayesian hierarchical model for the
analysis of complex traits, and ridge regression [36]. The
smooth-threshold multivariate genetic prediction had the highest
prediction accuracy with a partial correlation of 0.05 and P
value of <.005; this model also successfully reduced overfitting
[36]. The study by Sekaran and Sudha [26] used 5 different
machine learning algorithms to identify genetic biomarkers:
Bayesian network, support vector machine, random forest, back
propagation neural network, and linear discriminant analysis.
The accuracy of the Bayesian network and support vector
machine was >90%; the accuracy of the other algorithms was
<75% [26].

The transcriptomic study by Ciobanu et al [30] combined a
random forest classifier model with Weighted Gene
Coexpression Network Analysis into an algorithm called fuzzy
forest that identified an association between depression and the
transferrin receptor gene. The fuzzy forest classifier was able
to reduce the dimensionality of the transcriptomic data and
allow a predictive marker of depression to be identified with a
smaller sample size [30]. In a transcriptomic study using brain
tissue, extreme gradient boost (XGBoost) was chosen for its
feature selection and reduction characteristics and ability to
rank features by importance [18]. The AUC for the best
performing model was 0.72 [18]. Furthermore, XGBoost was
used in the transcriptomic study by Le et al [37], and its
performance was compared to 2 tree-based pipeline optimization
tools (TPOTs). XGBoost produced an accuracy of 0.59, and the
standard TPOT produced a similar accuracy of 0.60 [37]. The
TPOT combined with a feature set selector and the ability to
slice the data into smaller subsets, produced the highest
prediction accuracy of 0.68 [37].

In the multiomics study by Bhak et al [6], the authors used a
random forest model and feature selection to analyze blood
transcriptome and methylome data; this model correctly
predicted the labels for suicide attempters and nonsuicide
attempters with depression and controls. Scores on the Hamilton
Rating Scale for Depression-17 were also correctly predicted
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by a linear regression model [6]. The microbiomic study by
Stevens et al [24] used a random forest method to identify gut
microbiome taxa and related metabolic pathways associated
with depression. The R packages ALDEx2, DADA2, and PIME
(R Foundation for Statistical Computing) analyzed the DNA
sequences of the microbiota in stool samples to produce exact
amplicon sequence variants, identify taxa associated with those
variants using a Naive Bayes classifier, and filter the results
into unique amplicon sequence variant sequences [24]. This
approach differentiated between individuals with depression
and healthy controls, and the results were supported by
multivariate analyses with a P value of <.001 and effect size
>0.5 [24]. Machine learning predicted metabolic pathways
associated with the individuals in the depression and control
groups with AUCs ranging from 0.66 to 0.9 [24].

Verma et al [19] used random forest and k-nearest neighbor
methods to analyze transcriptomic data and classify patients as
depressed and died by suicide, depressed and did not die by
suicide, and healthy controls. K-nearest neighbor stores all cases
and classifies new cases based on their similarity [19]. Using
random forest, the test data were classified with an accuracy of
61.11%, and the training data were classified with an accuracy
of 97.56%; with k-nearest neighbor, the accuracy was 61.11%
for test data and 76.6% for training data [19].

The GWAS using the top 500 SNPs to identify biological
pathways associated with depression compared the performance
of random forest; least absolute shrinkage and selection operator;
and ReliefF, a nearest neighbors feature selection algorithm
[35]. ReliefF was the best performing algorithm, likely due to
its ability to detect statistical interactions, and this method
identified most genes associated with biological pathways
related to depression [35]. Furthermore, ReliefF was used in a
transcriptomic study and was combined with different
cross-validation methods [38]. The private evaporative cooling
and general elastic net algorithms had the highest accuracy on
the training data, but consensus nested cross-validation had the
highest accuracy on the validation data as well as low overfitting
[38].

In the study of microRNAs by Qi et al [1], a regularized gradient
boosted method was used to classify individuals with depression
and healthy controls. The models were trained with
cross-validation and 2500 iterations of parameter searches [1].
The models were then retrained using the best parameters [1].
The best model achieved an AUC of 0.93 [1]. When classifying
cases as normal to mild or moderate to severe, the best model
achieved an AUC of 0.76 [1].

Unsupervised Machine Learning
The study of microRNAs by Qi et al [1] used an unsupervised
clustering approach to differentiate individuals with depression

from healthy controls. A total of 500 iterations of a k-means
clustering method were applied to the data set [1]. They obtained
2 clusters with similar sample sizes, both with an AUC >0.70
[1].

Deep Learning
The DeepWAS study by Arloth et al [15] used a deep learning
method called deep learning-based sequence analyzer to predict
the function of SNPs. Of >8 million SNPs analyzed; this method
predicted 40,000 regulatory SNPs based on their affinity with
an FU [15]. The AUCs ranged from 0.59 to 0.66 [15]. A
regularized linear regression was used to determine which SNPs
were associated with depression [15].

The DNAm study by Fan et al [27] used a support vector
machine, random forest, and a neural network to predict
depression based on methylation of the tryptophan
hydroxylase-2 gene. The neural network had the best
performance with an AUC of 0.988, sensitivity of 98.3%,
specificity of 95%, accuracy of 97.4%, and positive predictive
value of 98.3% [27]. In addition, they found that models
combining clinical variables with tryptophan hydroxylase-2
methylation performed better than models based on clinical
variables or methylation alone [27].

Critical Appraisal
The studies’ strengths and weaknesses were identified using
the Joanna Briggs Institute Critical Appraisal Checklist for
Analytical Cross-Sectional Studies, as shown in Table 4. Of the
15 studies, only 2 (13%), Fan et al [27] and Qi et al [1], clearly
defined the criteria for inclusion in the sample. However, in all
15 studies, the individuals and setting were described in detail.
A total of 47% (7/15) of the studies classified participants as
experiencing depression but did not report how depression was
measured or diagnosed. This may be due to the authors using
data from biobanks and not having access to specific data about
the participants.

The authors did not identify possible confounding factors in 11
(73%) of the 15 studies. However, it is typical that confounding
is addressed when processing variables and during feature
engineering, but it may not always be described as it is such a
regular process. Therefore, the questions addressing confounding
factors were marked “not applicable.” The study did not
investigate the cause of depression or any associated diseases
or disorders. Furthermore, those 11 studies did not present
strategies to deal with confounding factors. The genomic
outcomes were measured in a valid and reliable way in all the
studies. The statistical analyses used seemed appropriate in all
15 studies.
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Table 4. Joanna Briggs Institute Critical Appraisal Checklist for Analytical Cross-Sectional Studies.

Verma
and
Shakya
[19],
2022

Taka-
hashi et
al [36],
2020

Stevens
et al
[24],
2021

Sekaran
and Sud-
ha [26],
2019

Qi et
al
[18],
2021

Qi et
al
[1],
2020

Payne
et al
[39],
2020

Parvan-
deh et al
[38],
2020

Lin
et al
[16],
2021

Le et
al
[37],
2020

Fan
et al
27],
2021

Ciobanu
et al
[30],
2020

Bhak
et al
[6],
2019

Arloth
et al
[15],
2020

Arabne-
jad et al
[35],
2018

Question

NoNoNoNoNoYesNoNoNoNoYesNoNoNoUnclearWere the cri-
teria for in-
clusion in
the sample
clearly de-
fined?

YesYesYesYesYesYesYesNoYesNoYesYesYesYesYesWere study
individuals
and setting
described in
detail?

NoYesYesNoNoYesYesUnclearYesUn-
clear

YesYesYesUn-
clear

YesWas the ex-
posure mea-
sured in a
valid and reli-
able way?

NoYesYesNoNoYesYesUnclearYesUn-
clear

YesYesYesUn-
clear

YesWere objec-
tive, stan-
dard criteria
used for
measure-
ment of the
condition?

——Yes—Yes———Yes—Yes————aWere con-
founding
factors identi-
fied?

——Yes—Yes———Yes—Yes————Were strate-
gies to deal
with con-
founding
factors stat-
ed?

YesYesYesYesYesYesYesYesYesYesYesYesYesYesYesWere the
outcomes
measured in
a valid and
reliable
way?

YesYesYesYesYesYesYesYesYesYesYesYesYesYesYesWas appro-
priate statisti-
cal analysis
used?

aNot applicable.

Discussion

Principal Findings
Machine learning can enable researchers to identify specific
features that impact depression, allowing providers to screen
for these features in a clinical setting. In this scoping review,
15 studies published in the past 5 years reported on machine
learning analysis of omics data to identify individuals with
depression. Owing to the diversity of the data sources and
methods, there was minimal overlap in comparable study results,

indicating that this field is still in exploratory stages but will
provide new avenues for future prediction of which patients are
at risk of developing depression.

Future studies could help with diagnosing depression using
genomic data in a more reliable way, helping to mitigate the
potential biases of screening interviews. However, while the
genomic studies identified many genetic variants associated
with depression, the lack of overlap in study results indicates
low reproducibility, which could be related to the low 40%
heritability of depression. It may also be associated with the
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heterogeneity of depression symptoms, with different genetic
variants correlating with different symptoms.

Genetic variants can be helpful in diagnosing depression, but
they are not generally responsive to environmental stimuli. Most
of the genomics studies in this review focused on identifying
SNPs that differed between individuals with depression and
healthy controls. One study focused on detecting pathways
associated with depression, while another used gene probes as
biomarkers [26,35]. With the varied outcomes, it was difficult
to compare these 2 studies to the others and determine if the
results were consistent.

Transcriptomics can identify transcripts associated with
depression or genes that are differentially expressed in
depression. Gene expression has some responsiveness to the
environment, as does DNAm. Of the 5 transcriptomics studies,
1 (20%) used brain and blood samples, while the other 4 (80%)
used only blood samples, so it was expected that the results may
vary. One of the studies reported downregulation of a single
gene; another study reported general dysregulation of a few 100
genes, and 1 study identified DEGs and upregulation or
downregulation of related pathways [18,19,30]. Another study
focused on DGMs, groups of genes that are coexpressed in
individuals with depression [37]. The fifth transcriptomics study
emphasized the machine learning models and reported how
many genes were selected by each model [38]. It would be ideal
for comparison if all the studies performed a transcriptome-wide
analysis and reported upregulation or downregulation of each
DEG identified.

The DNAm study of tryptophan hydroxylase-2 focused on the
methylation of a single gene rather than an epigenome-wide
approach, effectively limiting the results to that gene [27].
Similarly, the postpartum depression DNAm study focused on
only 2 specific genes, making it impossible to compare the
results of the 2 studies [39]. Epigenome-wide association studies
would likely be more effective in identifying differentially
expressed regions associated with depression and possibly
replicating work across studies [40].

Microbiomics was an interesting approach, as it did not use
blood or saliva samples to sequence genetic material from the
human participant [24]. Analysis of microbiomics data obtained
from stool samples found differences in the composition of gut
microbiota between individuals with depression and healthy
individuals [24]. Stevens et al [24] identified particular taxa
that were more prominent or depleted in the 2 groups.
Furthermore, they focused on identifying physiological pathways
involving microbiota that were associated with depression [24].
The multiomics study identified many DEGs and DMSs related
to depression [6]. This may be the most insightful method
because of the volume of results. However, it might be
challenging to determine which results are the most significant.
In addition, in many studies, only 1 type of omics data is
available, so the multiomics method is not feasible.

A total of 20% (3/15) of the studies focused on identifying
biological pathways. The genomics pathways study used the
top 500 genes determined through feature selection and found
associations with pathways that regulate neurotransmitter
signaling [35]. The transcriptomics study identified pathways

related to neurotransmitter reception, postsynaptic signal
transmission, synaptic depression, and receptor activation, while
the multi-omics study identified the Hippo signaling pathway,
which is involved in cell proliferation and affects antidepressant
response [6,41]. The genomics and transcriptomics studies show
relatively consistent results in finding associations with
pathways affecting neurotransmitters. The multiomics study
found a different type of pathway, which may reflect the
heterogeneity of depression and could indicate that different
mechanisms can lead to depression. Future omics studies could
include pathways analysis to build upon the knowledge of which
biological pathways are involved in depression.

All the machine learning methods performed well based on their
individual performance metrics. However, supervised methods
are preferred when attempting to identify biological features
related to depression because of their interpretability. Of the 15
studies, 8 (53%) reported AUCs to indicate how well the
machine learning models performed, while 5 (33%)only reported
accuracy; 2 (13%) reported accuracy, sensitivity, and specificity;
1 (7%) reported partial correlation coefficients; and 1 (7%) only
quantified the number of genes found in pathways related to
mood disorders. A review of the literature found that the most
common metric used to evaluate machine learning models was
accuracy followed by sensitivity and specificity [42]. However,
the use of AUC as a performance metric is increasing [42]. It
was difficult to compare the performance of the machine
learning models in this review due to the range of performance
metrics; using a standardized metric could prove more useful
when choosing a model and comparing results.

There are ethical considerations related to the prediction of
depression, such as the possibility of increasing insurance
premiums. The protection of patient privacy, confidentiality,
and trust is central to using genomics data, especially given how
sensitive the data are and how they could be used to predict the
risk of future conditions. Moreover, if it becomes feasible to
predict depression before an individual shows symptoms,
providers will need to determine the appropriate timing for
treatment. They could begin treating preemptively or wait for
symptoms to manifest. Furthermore, the cost of analyzing omics
data should be considered. Researchers should evaluate whether
omics data have a higher predictive accuracy than formal
psychiatric evaluation. If not, using omics data may not be the
most cost-effective way to identify individuals with depression.

Limitations
Finally, this scoping review is not without limitations. First,
many of the studies used data from biobanks, which did not
provide detailed descriptions of the participants in the data sets.
This makes it impossible to know the demographics and other
sample characteristics. In addition, unknown sample
characteristics make the generalizability of study results unclear.
Moreover, some studies did not report how depression was
screened or diagnosed among patients, so it is not known if
validated screening measures or formal psychiatric diagnoses
were used or only patient reports were used.
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Future Work
In future research, it may be helpful to focus on machine
learning methods that identify features rather than those that
are more geared toward prediction. Identified features can
include genetic variants, DEGs, or differentially methylated
regions, which would provide more relevant information that
could be used to identify depression. The long-term goal of this
work is to be able to use these biomarkers for a more objective
diagnosis of depression.

Nursing Implications
Nurses are in a unique position to provide mental health support
to patients when they have received appropriate training and
education in psychotherapy [43]. Nurses have been called the
“gateway” for care because they are typically the first point of
contact with the health system and are in a position to build
therapeutic relationships with patients [44]. With their skills in
establishing therapeutic relationships, building rapport, active
listening, observing behaviors, and noticing the effects of
medications, nurses serve an extremely important role in the
health promotion of patients seeking mental health support [44].

In addition, machine learning–based prediction of depression
will eventually become part of common nursing clinical
workflow. Therefore, it is imperative that nurses bring their
expertise to the creation, evaluation, and implementation of
artificial intelligence approaches to depression prediction. Of
note, none of the 15 studies had nurse researchers as members
of their study team. Nursing involvement in the entire life cycle
of artificial intelligence will positively impact the usability and
usefulness of data tools in clinical practice.

Conclusions
This scoping review describes different types of omics data and
machine learning methods used to analyze these data to predict
and diagnose depression. The findings indicate that the omics
methods had similar performance in identifying variants,
differentially methylated sites, and differences in gene
expression. All machine learning methods performed well based
on the metrics provided. Further research is needed in omics
methods to identify more variants and differential sites and gene
expression. When variants in omics data indicate the possibility
of depression, it is important for clinicians, especially nurses,
to assess individuals for symptoms of depression and provide
a formal diagnosis and treatment if appropriate.
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