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Abstract
Background: The rising prevalence of urinary incontinence (UI) among older adults, particularly those living in nursing
homes (NHs), underscores the need for innovative continence care solutions. The implementation of an unobtrusive sensor
system may support nighttime monitoring of NH residents’ movements and, more specifically, the agitation possibly associated
with voiding events.
Objective: This study aims to explore the application of an unobtrusive sensor system to monitor nighttime movement,
integrated into a care bed with accelerometer sensors connected to a pressure-redistributing care mattress.
Methods: A total of 6 participants followed a 7-step protocol. The obtained dataset was segmented into 20-second windows
with a 50% overlap. Each window was labeled with 1 of the 4 chosen activity classes: in bed, agitation, turn, and out of bed. A
total of 1416 features were selected and analyzed with an XGBoost algorithm. At last, the model was validated using leave one
subject out cross-validation (LOSOCV).
Results: The trained model attained a trustworthy overall F1-score of 79.56% for all classes and, more specifically, an
F1-score of 79.67% for the class “Agitation.”
Conclusions: The results from this study provide promising insights in unobtrusive nighttime movement monitoring. The
study underscores the potential to enhance the quality of care for NH residents through a machine learning model based on
data from accelerometers connected to a viscoelastic care mattress, thereby driving progress in the field of continence care and
artificial intelligence–supported health care for older adults.
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Introduction
Background
With the increase in life expectancy, there is a correspond-
ing rise in the prevalence of urinary incontinence (UI), a
common health problem among older adults [1]. Studies

have indicated that UI affects over 50% of older adults
residing in nursing homes (NHs) [2-4]. Current care practices
for managing UI in NHs involve incontinence wear (ie,
disposable absorbent products), with or without scheduled
toilet visits (voiding) [5]. Unfortunately, these practices often
lead to redundant checks and delayed interventions, thereby
triggering undesirable consequences, such as disturbed sleep
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patterns [6]. Despite its significant impact for residents’
health and overall quality of life, along with the increased
burden it places on care personnel and noteworthy financial
implications, UI remains underdiagnosed and its management
underreported [7].

In a recent scoping review conducted by Omotunde and
Wagg [8], authors found encouraging outcomes regard-
ing technology-driven continence care with a majority
of solutions incorporating sensor technology integrated
into body-worn disposable absorbent products (colloquially
referred to as “smart diapers”). These smart diapers offer
feedback regarding saturation levels and are capable of
identifying instances of leakage [9]. Complementary software
apps are used to collate these data and generate insightful
information and reminders intended for care personnel.

The introduction of technology-based continence care
within NHs, facilitated by the use of smart diapers, holds the
potential to monitor voiding processes and allows for timely
product changes [10]. By embracing such advancements, NHs
could potentially improve the quality of care delivered to
residents with UI.

The technology, however, comes with significant
expenses, with an initial installation and training cost up
to US $3300, combined with an additional charge of up to
US $3.50 per diaper for the incontinence wear [11]. Conse-
quently, smart diapers are mainly used for a short period
of time (ie, 3 days) to establish a personalized continence

care plan of the resident [10,12]. Furthermore, the use of
smart diapers is intrinsically linked to the use of continence
wear, limiting the ability to monitor UI patterns exclusively
during periods when these absorbent products are worn. This
contrasts with the research findings of Ostaszkiewicz et al
[13], which emphasized the urgent need for independent
resources, for example, technology, to inform decision-mak-
ing regarding continence wear.

Moreover, previous research [14] underlined the sig-
nificance of developing technology solutions that exhibit
sensitivity toward issues of intimacy, stigma, and taboo
inherent in continence care to preserve the NH residents’
dignity and overall quality of life. In light of this perspective,
the design of a monitoring system for NHs should priori-
tize unobtrusiveness, discreteness, and compatibility with
appropriate care equipment.

Prior research has explored monitoring nighttime
movement and identifying sleep-related disorders or sleep
stages via the use of unobtrusive sensor systems equipped
with accelerometer or pressure sensors, connected to beds
[15-18]. However, only a limited number of researchers
have directed the focus of nighttime movement monitoring
with accelerometer sensors connected to the bed toward the
exploration of detecting nighttime movement to support NH
continence care. These few studies [19-21] are listed in Table
1 and are further detailed in the section Prior Work.

Table 1. Overview of unobtrusive accelerometer sensor systems evaluated to monitor nighttime agitation with a relation to continence care,
summarizing the number of participants (p) and location of the study setup, the sensor position on the mattress, and the algorithm deployed for data
analysis.
Authors and study Study setup Sensor position (mattress) Algorithm
Gong et al [19] 12 p at home Top and bottom + wristbands Cole‘s actigraphy [22] and

STFTa [23]
T’Jonck et al [20] 4 p at home Top CNNb

T’Jonck et al [21] 1 p in lab Bottom FFTc and CNN
aSTFT: short-time Fourier transform.
bCNN: convolutional neural network.
cFFT: fast Fourier transform.

Prior Work
Gong et al [19] monitored nighttime movement and incon-
tinence in patients with Alzheimer disease. Their study
encompassed 12 participants in a home environment. Wetness
events were monitored via the wireless bed-wetting alarm
system DryBuddy [24]. The system used two triaxial
accelerometer sensors, positioned on the upper and lower
sides of the mattress. They applied Cole’s actigraphy
algorithm [22] on the sensor data to estimate wake and
sleep periods. Two additional accelerometer sensors [25]
were strapped to both wrists of participants to monitor hand
movements. For the nighttime sleep agitation assessment,
they calculated a short-time Fourier transform [23], based
on a combined dataset from the bed sensors data and wrists’
nodes data, to indicate agitation.

The authors established that almost half (49%) of the sleep
agitation events occurred before a voiding event, support-
ing the observation that a need to void can trigger agita-
tion. However, authors did not provide evaluation metrics
for the used algorithm, nor differentiated multiple nighttime
activities.

In another study, T’Jonck et al [20] deployed a smart-
phone-integrated triaxial accelerometer, which was placed
in 4 different positions on the mattress. Their study encom-
passed 4 participants within a home setting, using a convolu-
tional neural network (CNN) approach for nighttime activity
tracking (ie, none, sit down, lay down, sit up, and stand up).
When including all sensor positions in the model, an accuracy
(ie, the ratio of correct predictions to the total number of
predictions [26]) of 92% was reached. Unfortunately, authors
did not further elaborate on these different positions.
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In a subsequent study of T’Jonck et al [21], the smart-
phone was substituted with an triaxial accelerometer sensor,
positioned on the bottom surface of the mattress. This
evaluation was conducted with one participant within a
laboratory environment, and activity tracking (ie, none, in
bed, out of bed, changing position, and agitation) was
accomplished via a fast Fourier transform (FFT) model in
addition to a CNN-based model. For the model that combines
FFT and CNN, an accuracy of 88.96% was achieved, showing
the applicability of unobtrusive monitoring of nighttime
movement via accelerometer sensors.

Both studies yield outcomes that suggest promise for
the detection of agitation and, hence, monitoring nighttime
movement. However, Gong et al’s [19] system design
involved the use of nodes strapped on the participants’ wrists,
which could be perceived as obtrusive. Furthermore, their
study did not include classification metrics to evaluate the
used algorithm, hindering a meaningful comparison with
alternative system designs.

Conversely, T’Jonck et al [20,21] prioritize an unobtru-
sive system design in their research, incorporating thor-
ough evaluation metrics for their developed algorithms.
Consequently, in their subsequent study, they substitute the
smartphone app with a mattress-attached sensor. However,
this modified setup is only validated using data from a single
participant.

Both studies were conducted in a home environment
or explicitly specified the use of a standard bed and mat-
tress, without considering the pressure-redistributing features
of care mattresses for care beds. Such a care mattress
is composed of a temperature-sensitive cell structure that
softens by the heat from an individual’s body and molds
around the body to distribute pressure efficiently [27]. This
means that the individual’s weight can spread over a much
wider area compared with a conventional mattress. Such a
care mattress is frequently used in NHs, as it reduces the risk

of pressure ulcers and, thus, is recommended for use among
individuals at high risk of developing pressure ulcers [28-30].

Goal of This Study
In this study, we extend the investigation of unobtrusive
monitoring with accelerometer sensors positioned on the
bottom surface of a pressure-redistributing care mattress. This
exploration aims to monitor nighttime movement and detect
large body movements, a symptom of nocturnal agitation
[31], simulated by 6 adult participants in an experimental
setup. Notably, our approach incorporates a care bed with a
viscoelastic mattress as used in NH settings, for the purpose
of tracking 4 activities: in bed, turn, agitation, and out of
bed. Through this methodology, we endeavor to enhance the
understanding of the potential of using artificial intelligence
tools in advancing the field of NH continence care.

Methods
Movement Monitoring System
The movement of the participants was monitored using the
Byteflies Kit [32], a medically certified motion monitoring
device, with sensor dots. A single sensor dot can record
triaxial accelerometer and triaxial gyroscope signals, sampled
at 100 Hz. Sensor dots can last 24 hours and are charged via a
docking station.

In this measurement, the researchers opted to attach two
sensor dots to the bottom side of the mattress on an NH care
bed (Figure 1) on the left and right side. The placement of the
dots on the mattress aligned with the positioning in a previous
study [33]. If a participant lay down on the care bed, the
sensor dots were located beneath their back.

The pressure-redistributing care mattress is a Tempur-Med
viscoelastic mattress with a width of 14 cm, as commonly
used in NHs to reduce pressure ulcers [27].
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Figure 1. Photograph of the movement monitoring system attached to the bottom side of the mattress on a nursing home care bed. The position of the
two Byteflies sensor dots is circled by a dotted line, with dot 1 positioned on top and dot 2 on the bottom.

Recruitment
The data acquisition was carried out during the COVID-19
pandemic, from October 2020 until December 2020. NH
residents are a frail population and were greatly affected
by the adverse health effects of the pandemic. Therefore,
we recruited university colleagues who were allowed to
travel to campus. Ethical approval to conduct the research
was obtained from the KU Leuven Social and Societal
Ethics Committee with protocol number G-2020‐2214. Safety
measures as mandated by the national government were
applied at all times. Inclusion criteria for participants were
individuals 18 years or older, living in Belgium, and being
able to participate independently, understanding the purpose
and involvement and providing consent. In total, 6 colleagues
volunteered their time with a mean age of 29 (SD=4) years,
a mean height of 177 (SD=9) cm, and a mean weight of 74
(SD=20) kg. Among the participants, 2 were female, and 4
were male.
Measurement Protocol
The participants were instructed to follow a 7-step proto-
col outlined in Figure 2 to simulate nighttime movement,

including (nocturnal) agitation. To start with step 1, the
participants entered the care bed on their back, lying down for
60 seconds. Subsequently, for step 2, they turned onto their
left side and waited for 30 seconds. This sequence continued
with step 3, involving a return to their back and a 30-sec-
ond wait, followed by step 4, requiring a turn to their right
side with another 30-second interval. In step 5, participants
engaged in large body movements for 30 seconds, with the
execution left to the participants’ interpretation, because the
authors could not find a standardized definition or duration
for nocturnal agitation in older adults correlated to inconti-
nence. Step 5 was succeeded by step 6, involving lying on
their back for 60 seconds. Finally, step 7 required participants
to leave the bed for 60 seconds before repeating the entire
protocol. Each participant completed the protocol 5 times. A
Garmin Venue SQ smartwatch [34] guided the participants
through the protocol, providing vibration notifications to
prompt transitions between steps.
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Figure 2. Illustration of the measurement protocol followed by the participants to monitor their movement.

Data Collection and Analysis
First, relevant settings and hyperparameters to start the data
analysis and training process were tuned on the basis of the
obtained results. After an exploration to identify the optimal
settings, the following configurations were selected.

Signal Preprocessing and Annotation
Figure 3 displays the unfiltered triaxial accelerometer data
gathered from the 2 Byteflies dots for participant 2. These
data were annotated based on the protocol’s time interval.
In this preprocessing, the data were also scaled to the
unit variance and band-pass filtered. Starting from the filter
settings initially outlined by Razjouyan et al [35] and further
fine-tuned for our dataset, a fourth-order Butterworth filter
was applied with cutoff frequencies at 2 Hz and 10 Hz. At
last, the data were categorized into 4 activity classes that are
relevant for monitoring with regard to NH (continence) care
management:

1. In bed: The bed is occupied, and the participant lies
either on their back (steps 1, 3, and 6), left side (step 2),

or right side (step 4). For NH residents, activity within
this class is considered regular nighttime behavior.

2. Agitation: The bed is occupied, and the participant acts
agitated by moving their arms and legs (step 5). For
NH residents who need continence care, this agitated
movement can be triggered by a voiding event.

3. Turn: The bed is occupied, and the participant
transitions from the current step in the protocol to the
following step (eg, from turning on the left side in step
2 to turning on the back in step 3). On each occasion
in the measurement protocol, the last 5 seconds of the
current step and the first 5 seconds of the following
step are categorized as a turn. For NH residents, turning
is considered to be an effective way of preventing
pressure ulcers [36].

4. Out of bed (unoccupied): The bed is unoccupied, as the
participant left the bed. This is regular daytime behavior
for NH residents.

Figure 3. The unfiltered triaxial acceleration (Ax, Ay, and Az) in gravity (g) in time of two Byteflies dots for participant 2 for a complete
measurement protocol. Beneath this sensor data, the signal is categorized into 4 activity classes.
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Sliding Window
A sliding window was applied on the dataset and the selected
window size was 20 seconds with 50% overlapping for a
sampling frequency of 100 Hz. If there were multiple classes
present within one window, the window was annotated as the
majority class.

Feature Extraction and Selection
To extract features from the segmented time series dataset,
the Time Series Feature Extraction Library Python package
was selected [37]. Time Series Feature Extraction Library
is an automated process of feature extraction, designed
to accelerate the time consuming and complex explora-
tory analysis of multidimensional time series. The library
computes over 60 different parameters across temporal,
statistical, and spectral domains. Out of the computed
set of 4668 features, a refined subset of 1416 features
was derived after eliminating correlated and zero-variance
features. Subsequently, this selected subset was scaled to unit
variance.

Machine Learning Algorithm
On the basis of the selected features and obtained results
in the training process, the scalable end-to-end tree extreme
gradient boosting system, XGBoost, was used to train the
model for the classification task at hand [38]. It is an open-
source Python package that implements gradient boosting and
tree learning paralleling, effective in applications with limited
data and in human activity recognition, including older adults
[38-41]. The hyperparameters of the XGBoost algorithm were
optimally adapted to obtain a robust and accurate model.
SHAP (Shapley additive explanations) TreeExplainer was
used as the explanation method for the model’s output,
providing fast local explanations with guaranteed consistency
[42].

Model Training and Evaluation
To evaluate the model, leave one subject out cross-validation
(LOSOCV) was used. This statistical technique divides the

original dataset into a training and validation set, alternating
between them in successive rounds and ensuring each data
point undergoes validation [43]. Gholamiangonabadi et al
[44] demonstrated that LOSOCV serves as a rigid criterion
for evaluation models of times series accelerometer data in
human activity recognition.

In this study, the process involved 6 iterations and, for
each iteration, data from 1 out of the 6 participants was left
out as the validation set to train the XGBoost classification
model.
Ethical Considerations
Ethical approval to conduct the research was obtained from
the KU Leuven Social and Societal Ethics Committee with
protocol number G-2020‐2214. All participants were invited
to participate voluntarily and received verbal and written
information about the study in advance. Each participant
signed an informed consent form and was assigned a unique
identifier for data processing. The first author kept the names
and unique identifiers separately from the obtained study
data.

Results
Algorithm Performance
Upon acquisition of data from all participants, the data were
processed to assess the effectiveness of the XGBoost model
for the task at hand. The validation outcomes are represented
in Tables 2 and 3, with the results for the total dataset from
two Byteflies dots at the top and the results split per Byteflies
dot at the bottom. In total, the dataset encompasses 898
windows, of which 481 windows (53.56%) were attributed
to the class “In bed,” 60 windows (6.68%) to “Agitation,” 207
windows (23.05%) to “Turn,” and 150 windows (16.70%) to
“Out of bed.” Because the number of windows per class is not
proportional, the dataset can be considered imbalanced.

Table 2. Overview of the distribution of windows (n and %) per class for the total dataset from two Byteflies dots and the classification metrics
precision, recall, and F1-score (%) per class for the leave one subject out cross-validation of the XGBoost model.

In bed Agitation Turn Out of bed
Windows, n (%) 481 (53.6) 60 (6.7) 207 (23) 150 (16.7)
Precision (%) 84.32 77.78 69.67 78.95
Recall (%) 86.07 81.67 71.01 70
F1-score (%) 85.19 79.67 70.33 74.24

Table 3. Overview of the classification metrics precision, recall, and F1-score (%) per Byteflies dot (d1 and d2) for the leave one subject out
cross-validation of the XGBoost model.

In bed Agitation Turn Out of bed
d1 d2 d1 d2 d1 d2 d1 d2

Precision (%) 81.75 77.99 84.13 68.06 71.83 59.46 77.97 80.70
Recall (%) 85.65 85.45 88.33 81.67 73.56 52.88 61.74 61.74
F1-score (%) 83.65 81.55 86.18 74.24 72.68 55.98 68.91 69.96
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The classification metrics (ie, precision, recall, and F1-score)
listed in Tables 2 and 3 provide a performance assessment
of the deployed algorithm. The confusion matrix depicted in
Figure 4 illustrates the distribution of the number of windows
predicted per class for the total cross-validation dataset from
two Byteflies dots. Precision is the measure to tell how
many correct positive predictions the model made [26]. It is
calculated as the ratio of true positive predictions to the total
positive predictions (true and false positive). The class “In
bed” attained the highest precision (84.32%) and the model
interpreted a few of the windows from the classes “Turn”
(41) and “Out of bed” (36) as “In bed.” These are called
false positives. The precision for “Agitation” was 77.78% as
the model predicted some windows from the class “Turn” as
“Agitation” too.

Recall is another classification metric to measure the ratio
of correct positive predictions to all actual positives [26]. The
recall for the class “In bed” scored the highest (86.07%), and
the misclassified windows were predicted as “Turn” (44) or

“Out of bed” (23) (false negatives). Also for the “Agitation”
class, it was observed that 11 of the incorrectly predicted
windows were labeled as “Turn.” Conversely, the incorrect
predictions for “Turn” also had a majority of 41 windows in
“In bed.” For the class “Out of bed,” the most incorrectly
predicted windows were observed in “In bed” (36).

At last, the F1-score is the harmonic mean or weighted
average of precision and recall for a classification problem
and especially useful with an imbalanced dataset [26]. The
class “In bed” attained the highest overall F1-score (85.19%)
and “Turn” manifested the lowest F1-score (70.33%).

The results split per Byteflies dot in Table 2, revealed
an overall better outcome for dot 1, compared with dot
2, especially for the classes “Agitation” and “Turn.” When
combining the data from two dots, the results for the classes
“In Bed” and “Out of bed,” improved. In contrast, the results
for “Agitation” and “Turn” were higher for dot 1 than
combined with the lower result of dot 2.

Figure 4. The confusion matrix of the leave one subject out cross-validation of the XGBoost model, containing data from 2 Byteflies dots, visualizing
the number of windows predicted per class.

High-Impact Features
Figure 5 illustrates the mean absolute SHAP value per
class for the top 10 features with the highest impact on
the model predictions. SHAP values use a game-theoretic
approach to quantify the contribution of each feature to the
machine learning model’s outcome [45]. These values assign
an importance value to each feature, reflecting how much it

influences the final prediction. To specifically elaborate on
the tree-based XGBoost model at hand, the TreeExplainer
explanation method is used. The name of the feature provides
information on the data used to compute the feature: the axis
(Ax, Ay, or Az), the applied filter (band-pass), and the sensor
dot (1 or 2).
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Among the selected features, the “ECDF Percentile Count”
computes the cumulative sum of samples falling below the
percentile of the empirical cumulative distribution function
(ECDF) [37].
The ECDF is a simple nonparametric estimator and is
obtained by calculating the cumulative probability for each
number of unique observations in the data sample less than
or equal to a given unique observation x, divided by the total
number of observations n (Equation 1) [46,47].

(1)ECDF(x) = (number of unique observations ≤ xn )
Notably, the “ECDF Percentile Count_0” for data along
the x-axis of sensor dot 1 computes the cumulative sum
of samples falling below the 20th ECDF percentile and
significantly impacts the model’s output across the three
classes “In bed,” “Out of bed,” and “Agitation.” For the class
“Turn,” the feature “Absolute energy” for data of the x-axis
of sensor dot 1, which computes the absolute energy of the
signal, has the highest average impact [37]. In addition, 3
features in the plot involve FFT mean coefficients, capturing
the mean value of each spectrogram frequency [37]. With a
default setting of 256 bins and a sampling frequency of 100
Hz, the bin width is calculated with Equation 2 and is 0.39

Hz. This means that bin 55 corresponds to 21.48 Hz, bin 62 to
24.22 Hz, and bin 144 to 43.68 Hz. The frequency of bin 144
is the same as for bin 112, as only half of the bins are unique
in the FFT spectrum of a signal [48].

(2)Bin widtℎ = Sampling frequencyNumber of bins =   100 Hz265 bins = 0.39 Hz
Another set of 3 features in the plot relates to continu-
ous wavelet transform (CWT): “Wavelet absolute mean”’
computes the CWT absolute mean value for each wavelet
scale, while “Wavelet energy” quantifies the CWT energy for
each wavelet scale [37]. Importantly, none of the selec-
ted features are computed based on z-axis data. Based on
the positioning of the sensor dots, the z-axis was directed
upwards, from the bottom to the top of the mattress [32].
Leave One Subject Out Cross-Validation
Table 4 presents the weighted F1-score and accuracy for the
LOSOCV set per participant, along with the overall result.
The accuracy, or the ratio of correct predictions to the total
number of predictions [26], is chosen to be able to compare
the results with prior work. However, the weighted F1-score
is the more appropriate metric here for model validation
due to the label imbalance of the dataset, as illustrated in

Figure 5. The bar plot of the mean absolute Shapley additive explanations values per class for the top 10 features with the highest impact on the
XGBoost model’s output. The name of the feature provides information on the data used to compute the feature: the acceleration axis (Ax, Ay, or
Az), the applied band-pass filter (bp), and the sensor dot (1 or 2). ECDF: Empirical Cumulative Distribution Function; FFT : Fast Fourier Transform.
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Table 2 and Table 3. The model achieved an overall score
of 79.56% for F1-score and 79.62% for accuracy. Participant-
specific performance ranged from a minimum F1-score of

69.40% (participant 3) to a maximum of 87.72% (participant
4), and accuracy ranged from 69.33% (participant 3) to 88%
(participant 4).

Table 4. Overview of the weighted F1-score and accuracy (%) per participant (p) and in total for the leave one subject out cross-validation of the
XGBoost model, containing data from two Byteflies dots.

p1 p2 p3 p4 p5 p6 Total
F1-score (%) 80.71 79.27 69.40 87.72 77.37 81.67 79.56
Accuracy (%) 80.54 79.33 69.33 88.00 78.00 82.55 79.62

Discussion
Principal Results
The study gained insights into using accelerometer sen-
sors, an XGBoost model, and LOSOCV as an unobtrusive
approach for monitoring nighttime movements to support
NH continence care, using a viscoelastic care mattress in
our setup, which effectively distributes an individual’s weight
over a broader surface area.

The confusion matrix indicated that the model correctly
classified most windows. With an overall F1-score of 79.56%,
and more specifically 79.67% for the class “Agitation,” the
algorithm developed in this study has attained a high level
of trustworthiness. The validation results for each partici-
pant revealed a variation in F1-score of 18.32% among
participants. Despite this variability, it is noteworthy that all
participants’ test outcomes achieved strong model perform-
ance. This was particularly remarkable given the considerable
differences in weight and height among participants.

A notable observation is applied to the results for class
“Turn,” where 41 windows are misclassified as “In bed.” This
misclassification may be attributed to the selected window
size of 20 seconds. This window size provided the best
overall result during the exploration phase, but is consider-
ably larger than the 10-second duration of a turn in the
dataset. Given that the primary emphasis of the study was
on the detection of agitation, this misclassification was not
deemed as concerning. Another issue arose with the smaller
number of misclassifications between “In bed” and “Out of
bed.” By removing the signal’s direct current component
with a band-pass filter, the difference between the 2 activi-
ties became less visible. Given the importance of being able
to accurately determine whether the bed of an NH resident
is occupied or not, the sensor system could be enhanced
by incorporating additional components, such as a pressure
sensor.

In our investigation of feature impact on the output
model, the cumulative sum of samples falling below the
20th percentile of the ECDF has a high impact on 3 of the
4 classes: “In bed,” “Out of bed,” and “Agitation.” Interest-
ingly, none of the selected features are computed based on
the z-axis data. This suggests that movement in the (inverse)
direction from the bottom to the top of the mattress provides
less informative input for our classification task.

Upon comparing the outcomes for the individual sensor
dots with the combined result, it became evident that using
more than one sensor only slightly improved the model’s
overall performance for 2 out of 4 classes. When learn-
ing more about the results per dot for “Agitation,” it was
observed that only 4 additional windows were misclassified
for dot 2, compared with the result for dot 1. Since there
was only a limited number of windows for this class, this is
immediately notable in a performance assessment. Unfortu-
nately, there was no clear explanation for this discrepancy in
the classification.

In practical application, a nighttime movement monitor-
ing system could support (continence) care in NHs by
notifying care personnel based on the detected events. In
the case of the detected event “In bed,” no immediate
action from care personnel is required. However, when the
system detects “Agitation,” care personnel should receive
a notification, especially when multiple successive agitation
events are identified. For incontinent residents, care person-
nel could then assess and, if necessary, change the incon-
tinence material. To provide personalized support, the NH
would have the flexibility to adjust the threshold for the
number of detected events per resident. For the event “Turn,”
action from care personnel would only be necessary when it
occurs infrequently, aimed at preventing decubitus. Here, the
frequency could be tailored to each resident. Finally, when
“Out of bed” is detected, care personnel should be notified
that the resident has left the bed, allowing them to assist the
resident back into bed without further complications.

Comparison With Prior Work
Gong et al [19] detected agitation using data from both bed
sensors and wristbands for the algorithm, yet the paper lacks
detailed precision insights or evaluation metrics for their
model to compare with the results of this study.

T’Jonck et al [20,21] achieved a high accuracy (92% and
85%) using FFT and CNN models across various bed sensor
setups and participants. Their studies, however, entailed fewer
participants and did not use a viscoelastic care mattress.

Notably, the smartphone accelerometer placed on top
of the mattress yielded higher accuracy than the bottom
placement of the accelerometer sensor, indicating the latter
as a more challenging position for movement measurement.
Nonetheless, the bottom placement aligns more closely with
the goal of developing an unobtrusive system. T’Jonck et
al [20] also concluded that the accelerometer’s position on
the bed should not significantly impact the model’s ability
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to classify the data. This is contradictory to our findings,
where a difference in performance is recorded between the
two Byteflies dots.
Limitations
The dataset of our study is limited, incorporating only
6 iterations (1 per participant). A larger sample size by
including more participants in the study could potentially
yield improved results.

Another limitation was the absence of NH residents or
older adults among the participants. The simulation of large
body movements was based on participants’ own interpre-
tation, which may not authentically mirror the nocturnal
agitation experienced by older adults.

Finally, the study adhered to a protocol designed to
simulate nighttime movement. It is essential to note that this
simulation differs from real nighttime movement, where lying
in a specific posture, turning, or experiencing agitation is not

dictated by predefined time intervals and does not necessarily
follow a sequential pattern.
Conclusions
This study presented the exploration of accelerometer-based
unobtrusive monitoring of nighttime movements to support
NH continence care. The XGBoost model combined with an
LOSOCV approach provided valuable insights into activity
tracking. The model was able to successfully detect the
specified activities with an overall F1-score of 79.56%.

To gain deeper insights into the developed sensor system
and to address its limitations, we recommend conducting a
follow-up study in an NH setting. This will enhance the
study’s external validity by capturing real-world conditions.
Incorporating NH residents and monitoring their nighttime
behavior present new challenges, including limited bed
mobility and the need for transfers.
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