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Abstract
Background: The COVID-19 pandemic exposed systemic vulnerabilities in public health infrastructure, underscoring the
urgency for innovation in disease surveillance and emergency response. Artificial intelligence (AI) has emerged as a promising
tool to enhance the accuracy, efficiency, and scalability of public health interventions. Yet, there remains a limited understand-
ing of how AI has been applied in real-world infectious disease control and who is contributing to its development and
implementation.
Objective: This scoping review aimed to map current applications of AI in public health practice for infectious disease control
since 2020. Specifically, it examined (1) the types of AI tools in use, (2) their purposes and implementation contexts, and (3)
the professional and institutional actors leading these efforts, including the role of nurses.
Methods: Using the Joanna Briggs Institute’s population, concept, and context framework, a structured search in Ovid
MEDLINE was conducted, which was guided by the “5Cs” framework for health emergency preparedness from the World
Health Organization (WHO). The search focused on English-language, peer-reviewed studies from 2020 that used AI tools for
infectious disease control within real-world public health practice. Nonoriginal articles, simulation-only studies, and studies
that lacked real-world implementation were excluded.
Results: Out of 600 screened studies in Ovid MEDLINE, 10 met the inclusion criteria. Two major AI types were identified:
machine learning (ML) algorithms and language-based tools such as chatbots and large language models. ML tools supported
outbreak detection, risk stratification, and resource allocation, while language-based tools promoted health communication,
particularly around immunization and HIV prevention. Studies were conducted in a diverse range of countries, including
several low- and middle-income countries, and used national datasets or surveillance systems. Despite nurses comprising half
of the global health workforce, no nursing-affiliated authors were found among first or corresponding authors, and no nurses
were represented in the broader authorship of the included studies.
Conclusions: AI technologies are being increasingly applied to support public health responses to infectious diseases, with
applications ranging from predictive analytics to real-time public engagement. However, adoption remains limited in scale,
scope, and professional diversity. The near-total absence of nursing participation in AI-related public health research is
particularly striking and represents a missed opportunity for inclusive innovation. Strengthening implementation research and
advancing informatics education among nursing professionals are critical next steps to ensure that AI tools reflect the realities
of public health practice and promote equitable outcomes.
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Introduction
According to the World Health Organization (WHO),
approximately 7.1 million deaths due to COVID-19 have
been reported as of July 2025 [1]. This pandemic exposed
the vulnerabilities and systemic shortcomings of global
public health infrastructure, underscoring the urgent need
for structural reforms [2]. COVID-19 clearly highlighted the
limited and uncoordinated pandemic preparedness, leaving
health systems unprepared and overwhelmed during a rapidly
spreading outbreak [3].

It is evident that public health, like other facets of modern
life, needs comprehensive modernization to ensure resilience
and effectiveness in the face of future global health crises [4].
The potential of artificial intelligence (AI) has emerged as a
powerful engine of transformation. While there is currently
no universally accepted definition of AI in the field of public
health [5], the WHO has described it as “the performance
by computer programs of tasks that are commonly associ-
ated with intelligent beings” [6]. The application of AI to
public health has started to reshape how agencies and the
practitioners of health manage disease surveillance and health
services, as well as how they predict, prevent, and opti-
mize health outcomes at the population level [7]. Predictive
modeling, real-time analytics, natural language processing
(NLP), and automated support systems for decisions are some
areas in which AI has shown great potential for enhanc-
ing accuracy, efficiency, and scalability [7-9]. In clinical
and medical research, AI has been applied across diverse
areas of health care, including disease diagnostics, infectious
disease forecasting, medical imaging interpretation, and drug
discovery [7,10,11]. However, in public health, it is still
unclear which AI tools are being used in practice and to what
extent.

As AI continues to revolutionize how data are collected,
interpreted, and used for the control of infectious diseases,
understanding how AI augments the practice of public health
becomes critical. Mapping the landscape of AI applications
to the control of infectious diseases provides a clear pic-
ture of the use of these technologies. This understanding is
also relevant to the frontline workers of the public health
workforce and the interprofessional teams of nurses, data
scientists, epidemiologists, and public health practitioners,
who are responsible for developing and delivering AI-based
interventions. Interprofessional collaboration promotes the
development of innovation, closing the gap between research
and the frontline application of solving real-world health
challenges [12].

Given their frontline roles, nurses need to be an inte-
gral part of interprofessional teams in AI development and
implementation in health care and public health. Despite
their vital role in health care delivery systems, nurses are
often underrepresented in public health [13]. Nurses comprise
approximately 50% of the global health workforce and have

historically not only contributed to clinical care but also
supported entire public health systems [14]. Nonetheless,
the limited focus on nurses in public health underscores the
need to incorporate nursing leadership and nursing expertise
as integral components of equitable and sustainable systems
[13].

In response to these challenges, this review aims to explore
how AI has been used to support the control of infectious
diseases in public health and how it strengthens responses
to such challenges, particularly by examining the contrib-
utors in this emerging field. Specifically, it outlines the
current landscape of AI applications in three key areas: (1)
identifying the types of AI tools currently used for infec-
tious disease control; (2) examining the specific infectious
disease strategies where these tools are applied; and (3)
analyzing who is leading and contributing to these AI-driven
efforts, across countries, institutions, and professional fields,
including nursing.

Methods
Structuring the Review Using the
Population, Concept, and Context
Framework
As the review’s objective was to map the landscape of AI
applications in infectious disease control, the population,
concept, and context (PCC) framework recommended by
the Joanna Briggs Institute (JBI) was adopted. The PCC
framework is most suitable for reviews intended to clar-
ify major concepts, identify areas of knowledge gaps, and
summarize how research is conducted regarding a focus topic
[15]. The review focuses on the actors involved in the control
of infectious diseases (population), the use of AI tools for
the control of infectious diseases (concept), and the postpan-
demic era of the practice of public health since the year 2020
(context).

Using the PCC framework, the following research
questions were articulated:

1. What types of AI tools are currently being used to
address infectious disease problems in public health?

2. How are these AI tools being applied across different
stages and settings of infectious disease control?

3. Who is leading and participating in these AI-ena-
bled efforts—specifically, to what extent are nursing
professionals represented in the published literature?

Key Concept Definitions
To achieve conceptual clarity and provide consistent analysis,
this review defined its 3 central concepts: AI, infectious
diseases, and public health interventions.

AI is defined as the use of computational techniques that
enable machines to perform tasks that typically require human
intelligence [16]. This includes, but is not limited to, machine
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learning (ML), deep learning, NLP, neural networks, and
large language models (LLMs) [16,17]. As the WHO pointed
out, AI is now an integral part of how health systems operate
[6].

Infectious diseases are illnesses caused by pathogenic
organisms or their toxic byproducts, transmitted to suscepti-
ble hosts through contact with infected individuals, animals,
or contaminated surfaces or objects [18]. Due to the possibil-
ity of rapid spread among populations and across borders,
infectious diseases pose a constant and high-priority threat to
global health systems [19]. The urgency of timely detection,
decision-making, and coordinated responses in managing
infectious disease outbreaks has made this domain a natural
candidate for the application of advanced technologies such
as AI [20].

Public health interventions refer to coordinated strat-
egies implemented to achieve targeted outcomes related
to disease prevention and population health improvement
[21]. Infectious diseases, more than others, frequently need
swift, orderly responses, which can be targeted at either the
infecting source (the isolation or elimination of infectious
material) or vulnerable persons (through quarantine, risk
communication, or immunization) [22,23].
WHO’s 5Cs Framework for Health
Emergency Preparedness and Response
For identifying studies that address all 3 core concepts
(AI, infectious diseases, and public health interventions),

a comprehensive search strategy was required. Although
choosing keywords for AI and infectious diseases is relatively
straightforward, the concept of public health interventions
is more expansive and diverse. To address this complexity,
the WHO’s “5Cs” framework for health emergency prepared-
ness and response was adopted as a conceptual guide [24].
The framework organizes intervention efforts into 5 domains:
Emergency Coordination, Community Protection, Collabo-
rative Surveillance, Safe and Scalable Care, and Access
to Countermeasures. These elements capture the practical
requirements of real-world infectious disease response and, as
such, represent a suitable resource for informing this review.

Each of the domains was then related to applicable
infectious disease control concepts and subsequently linked
to Medical Subject Headings (MeSH) (Table 1). For example,
the domain of Collaborative Surveillance was linked to terms
such as “Population Surveillance,” “Contact Tracing,” and
“Early Diagnosis.” Some of the terms were applicable in
more than one domain, like “Emergency Medical Services”
and “Diagnostic Tests, Routine,” as they span multiple areas
of public health response rather than being limited to a single
function.

Table 1. Mapping of the domains of the World Health Organization’s 5Cs strategy to infectious disease concepts and MeSHa terms.
5Cs strategy domains Infectious disease concepts Related MeSH terms
Emergency Coordination • Emergency preparedness

• Outbreak response
• Incident management

• Disaster Planning
• Emergency Medical Services
• Disease Outbreaks
• Public Health Administration

Community Protection • Vaccination
• Risk communication
• Health education
• Community engagement

• Vaccination
• Immunization Programs
• Health Education
• Health Communication
• Community Participation

Collaborative Surveillance • Surveillance
• Contact tracing
• Screening
• Early detection

• Population Surveillance
• Contact Tracing
• Diagnostic Tests, Routine
• Mass Screening
• Early Diagnosis

Safe and Scalable Care • Infection control
• Health system capacity
• Workforce protection

• Infection Control
• Health Services
• Delivery of Health Care
• Emergency Medical Services

Access to Countermeasures • Diagnostics
• Therapeutics
• Supply chains
• Resource allocation

• Diagnostic Tests, Routine
• Pharmaceutical Services
• Pharmaceutical Preparations
• Drug Delivery Systems
• Resource Allocation

aMeSH: Medical Subject Headings.
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Search Strategy
To enhance the comprehensiveness of the search and
minimize the risk of omitting relevant literature, the MeSH
terms identified in relation to each WHO 5Cs domain were
further examined in terms of their hierarchical structure.
Wherever possible, broader parent terms were included in the
search strategy to ensure that conceptually related subhead-
ings were not excluded. For example, “Population Surveil-
lance” and “Mass Screening” are nested under “Public Health
Practice,” and in this case, “Public Health Practice” was

included. The search strategy is presented in Multimedia
Appendix 1.

Figure 1 visualizes the final set of MeSH terms consid-
ered for inclusion, mapped onto their official hierarchical
structure. Colors indicate conceptual categories: orange for
AI terms, blue for infectious disease terms, yellow for public
health intervention terms, and green for terms relevant to both
infectious diseases and public health interventions. Terms in
red boxes were ultimately selected for inclusion in the final
search strategy.

Figure 1. Hierarchical structure of reviewed and selected Medical Subject Headings (MeSH) for the final search strategy.
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These finalized MeSH terms were combined to construct
a conceptually aligned search strategy in Ovid MEDLINE,
to reflect the 3 core domains of this review—AI, infec-
tious diseases, and public health interventions. The explosion
function enabled the incorporation of studies that included
only narrower terms in the search results. For example, since
“Public Health Practice” was included in the search strategy
with the explosion function enabled, studies with keywords,
such as “Mass Screening” or “Population Surveillance,”
which are nested under “Public Health Practice,” were also
captured in the search results.

For the concept of AI, the search strategy included
the MeSH term “Artificial Intelligence” with the explosion
function enabled. To ensure that AI was a central focus
of investigation, the search was limited to studies that
explicitly mentioned AI-related terms in the article title,
including “Artificial Intelligence,” “AI,” “Large Language
Model*,” “Machine Learning,” “Deep Learning,” “Natu-
ral Language Processing,” “Neural Network*,” “Generative
Artificial Intelligence,” “ChatGPT*,” and “Chatbot*.”

For the second core concept, infectious diseases, the
search strategy incorporated MeSH terms such as “*Disease
Transmission, Infectious,” “*Infectious Diseases,” “*Disease
Outbreaks,” and “*COVID-19.”

Lastly, to identify relevant studies involving public health
interventions, MeSH terms selected based on the WHO’s 5Cs
framework were included: “*Disaster Planning,” “*Public
Health Practice,” “*Health Services,” “*Health Communica-
tion,” “*Public Health Administration,” “*Delivery of Health
Care,” “*Diagnostic Tests, Routine,” “*Early Diagnosis,”
“*Pharmaceutical Preparations,” “*Drug Delivery Systems,”
and “*Resource Allocation.”

However, some terms, such as “Communicable Disease
Control” and “Immunization Programs,” inherently encom-
pass the concepts of infectious diseases and public health
interventions. To account for this overlap, search results for
these combined terms were integrated with results from the
separate concepts of infectious diseases and public health
interventions using an OR operator, and the final set was
combined with AI-related terms using an AND operator.

Finally, the search was limited to English-language,
human-subject studies published from 2020 onward to
reflect the post–COVID-19 landscape. Nonoriginal publica-
tions, such as case reports, commentaries, editorials, letters,
meta-analyses, news articles, and review studies, were
excluded from the search results.
Inclusion and Exclusion Criteria
The PCC framework was subsequently reapplied to guide
the screening process and determine study eligibility. For
the population element, the first step in screening was to
determine whether the studies were concerned with infectious
diseases affecting humans. Studies focusing on nonhuman
pathogens (eg, infectious waste disposal) or environmental
contamination were excluded.

Next, in line with the concept element, an assessment
was conducted to determine whether the tools used in public
health interventions were genuinely based on AI. Studies that
involved only basic digitalization or mechanization, without
integrating AI functionalities, were not considered eligible.

The context of the review focused on public health practice
after the pandemic. In applying this criterion, particular
attention was paid to whether each study explicitly addressed
a public health domain. For example, if the study cov-
ered the AI tools that were used to support clinical deci-
sion-making in emergency department triage or to optimize
resource allocation within health care facilities, the study was
excluded, as these applications fall outside the scope of public
health practice as defined in this review.

Another key element related to the context was the
practical implementation of AI. Studies were excluded if the
AI tools were not applied to real populations, did not utilize
official public health data, or lacked real-world implementa-
tion. This included studies limited to development or analysis
only, such as simulation or predictive modeling. However,
studies were deemed eligible if they had a clear practical
application to public health. For example, studies that used
authorized public health systems or infrastructure for data,
such as national surveillance platforms or electronic health
records, were included, as they demonstrated direct relevance
to and integration within existing public health practice.
Data Extraction
The initial screening was performed using Rayyan, a freely
accessible web-based tool designed to support literature
reviews [25]. Retrieved references were added to the software
for the purpose of duplicate checking as well as title and
abstract screening. Duplicates identified by the software were
removed. The identified studies were evaluated in full text for
the purpose of final inclusion.

Data extraction was conducted on all the studies identified
for full-text screening. To ensure consistency and comprehen-
siveness, a standardized data extraction template was created
using Microsoft Excel. The data involved general informa-
tion about each study, including authorship, year of publica-
tion, country of origin, study objectives, study design, study
setting, and study results.

Aside from the overall study features, additional data
elements were extracted to answer each of the 3 research
questions. To answer the first research question on the types
of AI tools, information was collected on the specific AI
technologies applied in the studies (eg, neural networks, ML,
and NLP).

For the second research question on the application of
AI tools in infectious disease control, data were extrac-
ted regarding their use or purpose (eg, prediction, preven-
tion, surveillance, and response to outbreak), the degree of
implementation (eg, local, national, and regional), and the
specific type of infectious disease being targeted.

Finally, to address the third research question on leader-
ship and participation in AI-enabled public health initiatives,
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affiliation data of the authors were obtained, including the
type of institution (eg, university, government, or company),
academic or professional discipline (eg, medicine, nursing,
technology, or informatics), and authorship (eg, first author
or corresponding author), with particular attention to the
inclusion of nursing professionals.

A critical appraisal of study quality was not considered
according to the updated methodological JBI guidelines for
scoping reviews [15].
Ethical Considerations
Ethics approval was not sought, as this review did not involve
human subjects in any form (no collection of primary data
from human participants or no use of secondary data).

Results
Article Selection
The initial search in Ovid MEDLINE identified 602 records
on June 13, 2025. After removing 2 duplicate records, 600

unique articles remained for screening. During title and
abstract screening, 531 articles were eliminated primarily
because they did not involve infectious diseases affecting
humans. Of the remaining 69 studies, 59 were screened out at
the full-text level for reasons such as nonpublic health focus
(eg, clinic- or hospital-based studies), inappropriate study
design (eg, protocols or editorials), irrelevant intervention
(eg, tools not based on AI), or lack of real-world applica-
tion (eg, studies limited to model development or simulation
rather than implementation) (Figure 2). As a result, 10 studies
were ultimately included in the final review. The PRISMA-
ScR (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) checklist is
presented in Checklist 1.

Figure 2. Article selection process.
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General Characteristics of the Included
Studies
Table 2 provides an overview of the key characteristics of the
10 articles that were selected for this review. These studies
reflected a wide geographic distribution and covered several

countries, including the United States (n=1), Brazil (n=2),
Pakistan (n=1), Italy (n=2), China (n=1), Kenya (n=1), and
Tanzania (n=1), with 1 study covering multiple countries
in Africa (Burundi, Ethiopia, Madagascar, Uganda, Rwanda,
and Zambia).

Table 2. Summary of key findings from the included studies.
Study Country Level of implementation Target disease Purpose of AIa

Asnake et al [26], 2025 Tanzania National VPDsb Surveillance, vaccination
Cosma et al [27], 2025 Italy Local VPDs Health communication
Friedman et al [28], 2025 Kenya National HIV Screening
Gianquintieri et al [29], 2022 Italy Local COVID-19 Outbreak identification
Massa et al [30], 2023 Brazil Local HIV Health education
Siddiqi et al [31], 2024 Pakistan Local VPDs Vaccination, health education
de Souza Filho et al [32], 2023 Brazil National COVID-19 Screening
Tadese et al [33], 2024 Africa Regional VPDs Surveillance, vaccination
Xiao et al [34], 2024 United States Local COVID-19 Resource allocation
Zhang et al [35], 2021 China National Foodborne diseases Outbreak identification

aAI: artificial intelligence.
bVPDs: vaccine-preventable diseases.

In terms of scope, 5 studies used AI tools at the local
level, targeting specific cities or subnational regions. Four
studies were classified as national-level studies, includ-
ing those that developed open-access web-based platforms
without specifying a particular locality. The remaining study
examined the regional usage of an AI tool and involved
multiple African countries as mentioned above.

The target diseases of the included studies differed.
Of the 10 studies, 3 addressed COVID-19, 4 addressed
vaccine-preventable diseases, 2 focused on HIV, and 1
addressed foodborne diseases.

Research Question 1: Types of AI Tools
The first research question examined what types of AI
tools have been used to support the management of infec-
tious diseases for public health. ML was the most utilized
approach, and it appeared in 7 of the 10 studies. The
remaining 3 studies utilized language-based AI technologies,
including LLMs and NLP (Table 3).

Table 3. Summary of machine learning and language-based artificial intelligence studies.
Study Software Performance evaluation
Machine learning studies
  Asnake et al [26], 2025 Jupyter Notebook Accuracy, precision, recall, F1-score, AUCa

  Friedman et al [28], 2025 Likely implemented in R software AUPRCb

  Gianquintieri et al [29], 2022 Not specified AUC
  de Souza Filho et al [32], 2023 Not specified Sensitivity, specificity, accuracy, AUC
  Tadese et al [33], 2024 Jupyter Notebook Accuracy, recall, F1-score, precision, AUC
  Xiao et al [34], 2024 Likely implemented in R software Reduction in hospitalization
  Zhang et al [35], 2021 Python Recall rate, F1-score
Language-based artificial intelligence studies
  Cosma et al [27], 2025 ChatGPT —c

  Massa et al [30], 2023 Dialogflow —
  Siddiqi et al [31], 2024 Python —

aAUC: area under the curve.
bAUPRC: area under the precision-recall curve.
cNot applicable.
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Language-Based AI: LLMs and NLP
Studies using language-based AI differed from those
using ML in both applications of AI and data collection
and analysis. These studies typically released chatbots or
conversational platforms in real-world settings. One example
is the study by Massa et al [30], which involved the devel-
opment of “Amanda Selfie,” a gender-affirming chatbot that
attempted to raise pre-exposure prophylaxis (PrEP) awareness
among adolescents in Brazil. It was programmed to work
on Facebook Messenger and used Dialogflow (Google LLC/
Alphabet Inc), an NLP framework that allows the system
to understand user messages as well as respond accordingly
[36]. Dialogflow acts as the chatbot’s brain, determining user
intent as well as managing conversation flow. Programming
languages for the chatbot were Perl (Larry Wall/The Perl
Foundation) and JavaScript (Brendan Eich/Oracle Corpora-
tion). Frameworks, such as Bottender, Catalyst, and Mojo,
were used to ease and streamline the development process.

In another study, Siddiqi et al [31] developed “Babli-
bot,” a chatbot for caregivers of children who are eligible
for immunization in Pakistan. Built with Python and the
Django framework, it used NLP, ML, and a human-in-the-
loop system combining AI automation with human oversight
to provide real-time support in Roman Urdu via SMS text
messages and WhatsApp messages. Bablibot was interoper-
able with the provincial immunization registry, providing
customized responses, and could work without an internet
connection, which made the project suitable for use in
low-resource, low-literacy environments.

Another project used the readily available NLP-based AI
model, ChatGPT, for generating and standardizing vaccina-
tion consent forms to be used in Italy [27]. In this study,
the AI tool was used to provide customized information or
recommendations depending on user needs. As a result, data
for evaluating the effects of the AI tool were collected after
deployment, based on actual user interactions.

ML Algorithms
Several studies employed ML to control infectious disea-
ses from structured sets of data using supervised models
of learning. As observed in studies by Tadese et al [33]
and Asnake et al [26], model development began with
data collection from large-scale, representative datasets, such
as Demographic and Health Surveys (DHS), from which
relevant features were extracted based on sociodemographic,
maternal, and health care–related variables. In the study by
Friedman et al [28], open-source geospatial datasets (eg, from
WorldPop, Meta, or IHME) were also integrated to enrich
individual-level medical data.

If needed, these datasets can be preprocessed through
imputation of missing values; balancing techniques, such as
SMOTE (Synthetic Minority Oversampling Technique); and
normalization, so that ML models can learn properly scaled
data [26,33]. However, if the ML model adopts the extreme
gradient boosting (XGBoost) algorithm, which includes a
built-in method called sparsity aware split finding, imputation

is unnecessary because it enables handling missing values
internally without prior imputation [28].

Building on this prepared data, model training is the
follow-up step of tool development commonly mentioned
in these studies, to enable accurate prediction or classifica-
tion for a specified public health endpoint, for example,
classifying children who are probable to have incomplete
immunization or predicting zero-dose status [26,33]. In this
step, various ML algorithms are commonly considered, for
example, logistic regression, random forest (RF), support
vector machine (SVM), XGBoost, and ensemble methodolo-
gies such as adaptive boosting. Tuning of hyperparameters is
typically done as necessary for model performance optimiza-
tion [26,28,33].

Common measures of evaluation included accuracy,
precision, recall, and F1-score [33,26], as well as area under
the curve (AUC) [35,32]. Additionally, Friedman et al [28]
used area under the precision-recall curve, which is of
particular significance under drastic class imbalance. The
selection of measures normally conformed to the nature of
the set and the intention of prediction. These measures were
used to gauge the quality and strength of trained models
for performing special public health tasks of prediction.
They indicate how effectively the models identify, pre-
dict, or classify public health events in practice. For exam-
ple, a higher AUC reflects stronger discriminatory ability
to distinguish between at-risk and not-at-risk populations,
while a higher F1-score suggests balanced model perform-
ance between sensitivity and precision, which is particularly
valuable in public health decision-making.

Model interpretability is also a recurring focus. Tadese et
al [33] and Zhang et al [35] used Shapley Additive Explan-
ations (SHAP) values to quantify the input feature–specific
contribution individually to model predictions, for use in
supporting clinical or programmatic decision-making. In the
study by Zhang et al [35], for instance, SHAP was used
alongside tree-based models to identify salient risk factors
for foodborne disease outbreaks from a national surveil-
lance system across China. Additionally, Tadese et al [33]
used SHAP for the interpretation of XGBoost predictors of
incomplete immunization among children under the age of
5 years across East Africa. This assisted in distinguishing
features that were common across underimmunized children.
In each instance, the use of SHAP allowed for not only
accurate but also interpretable prediction of modifiable risk
factors and hence supported relevant public health responses.

Programming environments were stated explicitly,
facilitating easier identification of development tools. Asnake
et al [26] and Tadese et al [33] applied Jupyter Note-
book, implying the use of Python. Zhang et al [35] also
used Python, running their outbreak detection models with
scikit-learn for model training and evaluation, XGBoost for
boosting-based tree modeling, and fuzzywuzzy for string-
based feature extraction.

In other cases, although the environment of program-
ming itself was not mentioned, methodological information
available suggests the likely selection of software. Xiao et al
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[34] likely ran their policy learning framework in R, as they
closely followed the approach proposed by Athey and Wager,
including the use of tree-based policy classes and doubly
robust estimation [37]. Given that Athey and Wager provided
R packages, such as policytree and grf, to support these
procedures [37] and the model components of a similar nature
(eg, finite-depth decision trees and generalized RFs) are also
noted, the computational process of Xiao et al [34] strongly
suggests an R-based implementation. Similarly, Friedman et
al [28] did not indicate the use of software, but reference to
the use of the mice package [38], an R package for handling
multivariate imputation, suggests that R software was most
likely used in their study.
Research Question 2: AI Application
Purposes in Infectious Disease Control
The type of AI (whether language- or ML-based) played
an important role in the type of infectious disease control
activities supported. This review found that studies that
applied language-based models were primarily designed to
support health communication and health education, while
studies that involved ML-based models covered large-scale
analysis of structured data tasks, such as surveillance, case
identification, outbreak prediction, and resource mobilization,
which have traditionally required more time and human labor
(Table 2).

Health Communication and Health Education
Both Massa et al [30] and Siddiqi et al [31] described
language-based AI technologies that were implemented
to enhance health communication. The chatbots actively
involved people, using individually tailored communication
to prevent infectious diseases. Specifically, the Amanda
Selfie chatbot provided more culturally appropriate messages
for adolescent men who have sex with men and adoles-
cent transgender women to promote awareness and use of
HIV PrEP. Amanda Selfie adopted the language used by
these adolescents. Interestingly, 61.1% of adolescents were
reached through Amanda Selfie, higher than what would be
achieved on Instagram or WhatsApp. This tool was espe-
cially effective among transgender adolescent girls and young
people. Although its sole impact on the uptake of PrEP
was modest, Amanda Selfie showed increased uptake when
accompanied by professional support.

Similarly, Bablibot promoted vaccination by providing
essential information for caregivers [31]. By addressing
common vaccine schedule worries, adverse events, and
service delivery, the tool helped reduce caregivers’ concerns
regarding vaccination and promoted informed decisions.
Its integration into the local immunization registry also
supported customized communication based on children’s
immunization history. This helped Bablibot reduce missed
vaccinations and increase caregiver confidence regard-
ing immunization programs, where traditional one-to-one
counseling remained limited.

Cosma et al [27] used ChatGPT for improving the
usability and readability of vaccination consent forms as an
alternative health communication. ChatGPT revised medical

technical terms and abbreviated formal forms for ease of
reading for patients and family members. These forms were
subsequently evaluated by health care professionals in the
vaccination unit, showing improved usability and readability.
The AI tool served as an assistant for reducing the workload
of manually preparing user-friendly health papers.

Identifying At-Risk Individuals or Populations
One of the significant strengths of ML is its ability to process
large-scale data and extract complex patterns that would
otherwise be unavailable using traditional statistical meth-
ods [39]. This makes ML an ideal candidate for identify-
ing individuals or subgroups most vulnerable and those
needing special consideration. For instance, Asnake et al
[26] and Tadese et al [33] used supervised learning mod-
els, including XGBoost and RF, to analyze DHS data and
predict incomplete or zero-dose vaccination status among
children in East Africa. By identifying risk profiles, including
maternal education, household income, antenatal care visits,
and geographic location, the models presented actionable
suggestions about subgroups that require the most attention
for immunization outreach.

Friedman et al [28] demonstrated a similar approach for
the scenario of HIV screening in Kenya. Based on routinely
and officially collected electronic medical record data, they
trained multiple supervised learning algorithms to identify
individuals likely to test positive for HIV. Their model
had remarkable predictive accuracy and was constructed for
implementation into real-time clinical practice, with high
suitability for resource-challenged settings. Hence, the system
makes the most of the efficiency of the tests, optimizes
service prioritization, and minimizes missed diagnoses.

One of the studies adopted probable case identification of
COVID-19 using a digital screening platform [32]. The online
platform used an ML algorithm to estimate the likelihood of
COVID-19 based on user-reported symptoms and sociodemo-
graphic characteristics. Integrated into a telemedicine service,
the platform helped reduce unnecessary hospital referrals by
classifying patients requiring further evaluation. Deployed in
Brazil during the early stages of the pandemic, it served as
both a triage support system and an early warning mechanism
for local outbreak control.

Early Warning of Disease Outbreaks
ML’s capacity to process large and complex data is use-
ful in various types of disease surveillance, including early
warning of disease outbreaks. Zhang et al [35] developed a
high-performance algorithm to overcome the large number of
false positives of suspected outbreaks reported by Chi-
na’s national Foodborne Disease Monitoring and Reporting
System. Among various ML algorithms that they explored,
the XGBoost model achieved the highest performance,
showing an excellent capability of distinguishing between
true outbreaks and false alarms. Notably, the model output
included not only binary classifications but also probability
scores, enabling fine-grained alert levels.
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Meanwhile, Gianquintieri et al [29] applied ML for
emergency medical service records to create high-resolution
territorial notifications for COVID-19 across Lombardy, Italy.
The supervised learning algorithm (RF) reached approxi-
mately 80% sensitivity for identifying active transmission and
provided daily, municipality-scale notifications capable of
preceding official outbreak patterns. This approach facilita-
ted more proactive public health responses and effective
prioritization of testing and health care resources, particularly
for initial or resurging pandemic waves.

Resource Allocation
Xiao et al [34] showed that the ML algorithm is also
applicable for optimized resource allocation in a public health
crisis. They developed a policy learning tree (PLT) model
using retrospective electronic health record data to improve
the distribution of monoclonal antibodies for COVID-19
treatment in the United States. The PLT model was trained
to focus treatment on patients who would most benefit from
treatment and minimize hospitalization. By comparison, the
ML-based approach had higher accuracy and efficiency than

traditional point-based strategies, and it has the potential to
inform real-time clinical decision-making for public health
emergencies.
Research Question 3: Leadership and
Participation in AI-Enabled Public Health
Efforts
To examine who is leading and participating in AI-ena-
bled public health interventions, the institutional affiliations,
disciplinary backgrounds, and authorships of the 10 selected
studies were analyzed.

A total of 77 authors contributed to the 10 studies
included in this review. Among them, 3 individuals held dual
affiliations, resulting in 80 total institutional affiliations. As
shown in Table 4, academic institutions accounted for the
largest share (47/80, 59%), followed by government agencies
(14/80, 18%), private companies (7/80, 9%), nongovernmen-
tal organizations (NGOs) (7/80, 9%), clinics (3/80, 4%), and
independent research institutes (2/80, 3%).

Table 4. Institutional affiliations of authors contributing to artificial intelligence–enabled public health interventions.
Type of institution Value (N=80a), n (%)
University 47 (59)
Government 14 (18)
Company 7 (9)
NGOb 7 (9)
Clinic 3 (4)
Research institute 2 (3)

aThree authors had dual affiliations; therefore, the total number of institutional affiliations (N=80) exceeds the total number of authors (N=77).
bNGO: nongovernmental organization.

The disciplinary classification of each author’s affiliation was
then analyzed. Of the 78 disciplinary designations iden-
tified among the 77 authors (accounting for dual affilia-
tions), the most common area was public health, accounting
for 34 out of 78 cases (44%). This was followed by

informatics (17 affiliations, 22%) and medicine (15 affilia-
tions, 19%). Technology-related disciplines accounted for
only 5 affiliations (6%), while 7 affiliations (9%) fell into
the “other” category (Table 5).

Table 5. Disciplinary classification of authors’ affiliations.
Disciplinary field Value (N=78a), n (%)
Public health 34 (44)
Informatics 17 (22)
Medicine 15 (19)
Technology 5 (6)
Other 7 (9)

aDual affiliations in different disciplinary fields resulted in a total of 78 disciplinary designations, although there were 77 authors in total.

Authorship roles were also explored to examine how
leadership in AI-enabled public health interventions is
distributed. Universities again comprised most first and
corresponding author affiliations. Among the 10 studies, 8
had first authors from universities and 7 had correspond-
ing authors from universities, followed by NGOs and an
independent research institute (Figure 3A). Disciplinary

affiliations also showed that public health was the most
frequently represented field across both roles (Figure 3B).
Informatics-related departments were more frequent for first
authors, whereas medical departments were more likely
for corresponding authors. There were no nursing-affiliated
authors as first authors or corresponding authors, and the
analysis of all co-authors did not indicate their presence.
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Figure 3. Author role distribution by institution type (A) and discipline (B) in artificial intelligence–enabled infectious disease control studies. NGO:
nongovernmental organization.

Discussion
Principal Findings
This review aimed to map the use of AI for infectious disease
control within public health settings in the post–COVID-19
era. It focused on identifying cases of actual implementa-
tion in real-world contexts. By synthesizing evidence from
10 studies across diverse global settings, it highlighted the
types of AI tools used, their applications in infectious disease
control, and the profiles of the experts leading these efforts.

AI for Infectious Disease Control: Language
Models Versus ML
One valuable finding was the clear division of AI appli-
cations into 2 major categories: ML-based modeling and
language-based communication tools. This distinction reflects
broader structural dynamics in public health, where back-
end analytics for decision-making and front-line commun-
ity engagement for health communication often function
as separate operational domains. ML tools like RF, SVM,
and XGBoost, were frequently applied to structured datasets
to perform classification, prediction, and risk stratification.
These approaches facilitated the timely detection of popula-
tions at increased risk [26,28,33], outbreak forecasting [29,
35], and data-driven resource allocation [34].

By contrast, language-based systems, such as chatbots
and LLMs, were used primarily to enhance communication,
education, and user engagement. These tools often operated
on popular platforms like Facebook Messenger or WhatsApp,
allowing real-time interaction in local languages and formats
tailored to specific populations [30,31]. Their deployment
was evident in interventions focused on vaccine promotion
or HIV prevention, where timely and culturally responsive
communication is essential [30,31].

Notably, these 2 categories vary in terms of not only
function but also technological accessibility. AI implementa-
tion typically demands considerable technological infra-
structure and expertise, including programming expertise,
statistical modeling familiarity, and the ability to work with

large-scale health data [40]. This might in part account
for the fact that these tools were largely created within
research institutes or universities. Conversely, language-
based tools lend themselves more easily to implementation
using available chatbot frameworks, application program-
ming interface–based services, and commercial applications
like ChatGPT. These systems usually demand no or lit-
tle programming expertise and are thus more accessible
for public health practitioners with limited technological
capability [41]. As such, the lower barrier to entry for
language-based AI might have made it easier to broadly adopt
these technologies in real-world public health contexts.

However, the studies included in this review largely
concerned text- and data-based modalities. While different
forms of multimodal AI, including visual, behavioral, and
biometric instruments, are becoming increasingly available
[42], no multimodal AI studies were identified that involved
application in practice within real-world public health,
implying a limited technological scope within practice at
present.

Some experimental research was found during the initial
screening, which indicates potential directions. For instance,
a study created an AI system to track people’s social
distancing in low-light situations and presented a possible
solution for pandemic real-time behavioral tracking [43].
Other innovations included automated drone-based mosquito
release systems [44] and mobile instruments for determining
the species of mosquitoes based on sound recordings [45].
Although these studies were excluded from the final analysis
due to limited real-world implementation, these examples
show upcoming prospects for expanding AI use beyond text
and data.
Two Functions of AI in Infectious Disease
Control: Communication and Analysis
Another important finding of this review was that the
functional applications of AI in the prevention and control
of infectious diseases broadly fall into two main categories:
(1) health communication and education, and (2) data-driven
analysis and decision support. These functions were closely
aligned with the type of AI technology employed.
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Health communication and education emerged as
prominent areas where AI was applied. Language-based tools,
such as chatbots and LLMs, were commonly used to facilitate
real-time messaging, disseminate accurate information, and
encourage behavior change. These tools often operated on
popular platforms like Facebook Messenger or WhatsApp
[30,31]. Cosma et al [27] further demonstrated that tools, like
ChatGPT, can be not only effective but also easily implemen-
ted even by users with minimal technical expertise.

Meanwhile, ML was used to process large-scale data-
sets and inform decision-making and strategic planning.
ML models were frequently used to analyze data from
national surveillance systems, medical records, and health
surveys. These models supported outbreak detection [29,
35], identification of at-risk populations [26,28,32,33], and
allocation of resources [34].

This functional divide suggests that the roles of AI in
public health are shaped by not only technical capabilities
but also the specific demands of the intervention context.
Language-based AI excels in fostering user engagement and
information exchange, whereas ML algorithms are better
suited for handling complexity and scale in backend decision-
making. While the former typically interfaces with the public,
the latter primarily supports health professionals behind the
scenes.

These findings are well aligned with the WHO’s 5Cs
framework, which was initially used to delineate the
scope of public health interventions in this review. Lan-
guage-based AI primarily supports community protection
through communication and education, while ML contributes
to collaborative surveillance, emergency coordination, and
access to countermeasures by enabling data-driven predic-
tion, response, and resource management across public health
systems. Although safe and scalable care was not directly
addressed in the reviewed studies, it remains an important
domain for future AI applications in clinical and workforce
settings.

Leadership Without Nurses? Participation
Patterns in AI-Based Interventions
The authorship analysis revealed clear patterns regarding
who is leading and participating in AI-enabled public health
interventions. Academic institutions dominated authorship
roles, accounting for the majority of both first and cor-
responding authors. Disciplines, such as public health,
informatics, and medicine, were most represented, with
technical and analytical expertise concentrated among first
authors, and medical leadership more often reflected among
corresponding authors.

However, one of the most striking findings was the
complete absence of nursing professionals in primary
authorship positions or among the broader group of co-
authors affiliated with schools, colleges, or departments of
nursing across the 10 final studies. This is surprising given
the central role nurses play in health systems globally,
particularly in frontline service delivery, community health
engagement, and population-level care coordination [14].

Importantly, this absence does not appear to be limited to
public health alone. A broader body of literature indicates that
nurses are frequently absent from the design and decision-
making structures for digital health technologies in other
areas, such as clinical decision support, predictive analytics,
and patient-facing AI [46,47]. As Bakken and Dreisbach
argue [48], the incorporation of nursing insights is essential
for creating more holistic health information systems.

As noted earlier, nurses comprise approximately 50%
of the global health workforce, and there are an estimated
29 million nurses worldwide [14]. The limited involvement
of nurses in the development and implementation of AI
and other digital health technologies is an important issue
that needs to be addressed. This underrepresentation may
be partly explained by structural challenges like the unavail-
ability of AI education or data infrastructure in nursing
curricula or by further isolation of nursing expertise from
technological innovation areas [48]. The American Associa-
tion of Colleges of Nursing and the Alliance for Nursing
Informatics are advocating for informatics/AI competencies
in nursing education and advancing nursing informatics
leadership, including AI projects, but gaps remain due to the
need for training, curriculum revisions, and limited funding
opportunities. The current gaps highlight an urgent need for
more intentional inclusion of nursing voices within interpro-
fessional teams developing and using AI-based technologies
for public health and health science.

Recommendations to Address Gaps in
Implementation and Representation

Gaps
Despite encouraging innovations, this review highlights
several notable gaps. First, this review identified only 10
studies that implemented AI tools in real-world public health
practice—a number vastly lower than anticipated, consider-
ing the number of AI research articles that get published
at present. Second, the applications of AI were not evenly
spread across regions and disease conditions. The major-
ity were concerned with COVID-19 or vaccine-preventable
infections, while other infectious diseases like tuberculosis
and malaria still carry a large burden across the world,
primarily in low- and middle-income countries [49,50].
Further, scaling up at national or international levels was
less frequent, and this indicates low scalability for most tools
beyond pilot scaling at local levels.

Strengthen Implementation Research on AI in
Public Health Practice
The relative absence of implementation studies in public
health indicates that most AI innovations exist at the pilot
or proof-of-concept phase, with few attaining system-level
implementation. To get a complete view of the feasibil-
ity, sustainability, and public health effects of AI-enabled
interventions, more implementation research is needed. This
involves exploring how AI tools get implemented, adapted,
and scaled within the framework of the existing health
system. Strengthening this body of work is essential to bridge
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the gap between AI-based tool development and the public
health improvement desired, and to ensure that technologi-
cal innovations translate into measurable improvements in
disease prevention and control.

Next, and most importantly, there was no representation
of nursing professionals as authors within the analyzed
literature. Considering the important contributions of nurses
to the health system, this omission is an important oversight.
This oversight could affect the practicality and fairness of
AI-enabled interventions in the real world. The complete
absence of professionals affiliated with nursing programs
or nursing-focused organizations in authorship roles, despite
nurses’ central roles in frontline health protection, is a
significant finding for additional action.

Advance Informatics Education to Support
Nursing Participation in AI
While educational background could not be assessed directly,
this absence may underscore the need for formal informat-
ics education and AI training in nursing, which includes
foundational data literacy, ethics of AI, and basic principles
of human-AI interaction. Future research must examine what
the most ideal type of educational intervention, curricular
revision, or continuing education is for equipping nurses
with the baseline skills needed for contribution back into AI
development and application. Empowering nurses with the
ability to meaningfully interact with AI is not only a matter
of workforce development but also a strategic imperative
for ensuring that emerging technologies are grounded in
the realities of care delivery and aligned with the values of
person-centered, equitable public health.
Limitations
This review has several limitations. First, the search was
limited to a single database (Ovid MEDLINE) and exclu-
ded studies indexed in other bibliographic databases (eg,
Scopus, Web of Science, and IEEE Xplore). Hence, the

results and subsequent interpretations are based on studies
indexed in MEDLINE, which limits the comprehensiveness
of the review, likely missing relevant studies in computer
science or broader multidisciplinary databases. Although this
strategy assisted in increasing the specificity of the search, it
decreased the generalizability of the findings.

Second, the inclusion criterion was the use of AI tools in
practical public health situations. Therefore, many simulation-
or model-based studies were excluded. However, they could
be helpful for future implementation in epidemic forecasting,
as explained by Kraemer et al [51]. While the eligibility
criterion in this study helped prioritize studies with demon-
strated practical application, it may have narrowed the scope
of technologies captured in the review.

Third, the disciplinary categorization of authors aligned
with institutional affiliation and not with individual professio-
nal education. Therefore, the lack of nursing professionals
could be an indication of the lack of metadata available and
not the absolute absence of nursing engagement. In this way,
the results for professional representation must be interpre-
ted with care because the results could be affected by how
disciplinary affiliation is reported and documented.
Conclusion
AI technologies are increasingly being applied to support
public health responses to infectious diseases, with applica-
tions ranging from predictive analytics to real-time public
engagement. However, adoption remains limited in scale,
scope, and professional diversity. The near-total absence of
nursing participation in AI-related public health research
is particularly striking and represents a missed opportu-
nity for inclusive innovation. Strengthening implementation
research and advancing informatics education among nursing
professionals are critical next steps to ensure that AI tools are
equitable, reflect the realities of public health practice, and
promote equitable outcomes.
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